State Notation Language
and Sequencer Users Guide

Version 2.0
(for EPICS release 3.13 and later)

Manual Revision 1.9 (DRAFT)
February 18, 1998
Written by Andy Kozubal

Instrumentation and Control Group
Dynamic Experimentation Division
Mail Stop P942

Los Alamos National Laboratory

Los Alamos, New Mexico 87545

Phone: (505) 667-6508
EMAIL: AKozubal@LANL.Gov

Manual Revision 2.0 (DRAFT 2)
October 15, 1999

Updated by William Lupton

(with some material by Greg White)

W. M. Keck Observatory
65-1120 Mamalahoa Highway

Kamuela, Hawaii 96743

Phone: (808) 885 7887
EMAIL: WLupton@Keck.Hawaii.Edu

EPICS Release: 3.13

State Notation Language and Sequencer Users Guide

1. Introduction

1. Introduction

Note on Versions

Version 1.9 of this manual described version 1.9 of the sequencer and was written by Andy Kozubal,
the original author of this software. This version of the manual describes versions 1.9.4 and 2.0, for
which the changes have been implemented by William Lupton of W. M. Keck Observatory and Greg
White of Stanford Linear Accelerator Center (SLAC).

Version 2.0 differs from version 1.9.4 mainly in that sequencer run-time code is once again portable
between VxWorks and Unix, and message systems other than channel access can be used. Version 2.0
differences are always noted. Version 2.0 can not be used with EPICS R3.13; it is dependent on
libraries which will be generally available only with EPICS R3.14.

Version 1.9.4 is being made available to the EPICS community but all new developments apart from
major bug fixes will be based on version 2.0.

Overview

The state notation language (SNL) provides a simple yet powerful tool for programming sequential

operations in a real-time control system. Based on the familiar state-transition diagram concepts,
programs can be written without the usual complexity involved with task scheduling, event handling,

and input/output programming.

Programs produced by the state notation language are executed within the framework of the run-time
sequencer. The sequencer drives the program to states based on events, and establishes interfaces to
the program that enable it to perform real-time control in a multi-tasking environment. The sequencer
also provides services to the program such as establishing connections to run-time database channels
and handling asynchronous events.

The state notation language and sequencer are components of the Experimental Physics and Industrial
Controls System (EPICS). EPICS is a system of interactive applications development tools (toolkit)
and a common run-time environment (CORE) that allows users to build and execute real-time control
and data acquisition systems for experimental facilities, such as particle accelerators and free electron
lasers. EPICS is a product of the Accelerator Automation and Controls Group (AOT-8), which is
within the Accelerator Operations and Technology (AOT) Division at the Los Alamos National
Laboratory. The sequencer interfaces to the run-time database through the channel access facility of
EPICS.

Content of this Manual

This users manual describes how to use the state notation language to program real-time applications.
The user is first introduced to the state notation language concepts through the state-transition
diagram. Through a series of examples, the user gains an understanding of most of the SNL language

2 State Notation Language and Sequencer Users Guide Document Revision: 2.0

1. Introduction

elements. Next, the manual explains procedures for compiling and executing programs that are
generated by the SNL. Testing and debugging techniques are presented. Finally, we present a
complete description of the SNL syntax and the sequencer options.

Omissions from this manual

This manual should contain more information on the following subjects:

« future plans
 the PV (process variable) API
« real-life annotated examplesadsign , sync , syncQ

Copyright and Restrictions

This software was produced under U.S. Government contract at Los Alamos National Laboratory and
at Argonne National Laboratory. The EPICS software is copyright by the Regents of the University of
California and the University of Chicago. This document may be reproduced and distributed without
restrictions, provided it is reproduced in its entirety, including the cover page.

Notes on This Release

New version 1.9 features have been moved to “New features in Version 1.9” on page 41. This section
gives brief notes on new version 1.9.4 and version 2.0 changes.

Version 1.9.4 of the sequencer and state notation compiler is available for EPICS release 3.13 and
later. We have added several enhancements to the language and to the run-time sequencer. State
programs must be compiled under the new state notation compiler to execute properly with the new
sequencer. However, no source-level changes to existing programs are required.

New Language Features

Entry and exit blocks

The entry{} block of a state is executed each time the state is enterecexif¢ block is
executed each time the state is left.

State options

-t ,-e and-x are now recognized options within the scope of a stateinhibits the “timer reset”
on re-entry to a state from itseHe (for “entry”) is used with the neventry{} block, and forces
theentry{} statements to be executed on all entries to a state, even if from the samexstdte;

“exit”) is complimentary tece , but for the nevexit{} block.

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 3

1. Introduction

Queueable monitors

Monitor messages can be queued and then dequeued at leisure. This means that monitor messages are
not lost, even when posted rapidly in succession. This feature is supported syne@, pvGetQ
andpvFreeQ language elements, and a ne¥gqQueueShow routine.

efClear can wake up state sets

Clearing an event flag can now wake up state sets which reference the evewlfflag tasts.

More C syntax is supported

Compound expressions suchiat,j=2 (often used in for loops) are now permitted.
Variables can now be initialized in declarations sucintas2;

Pre-processor#” lines are now permitted between state sets and states.

“~” (complement) and”™” (exclusive or) operators are permitted.

ANSI string concatenation, e.xx” “yyy” is the same dsxxyyy” , is supported.

Full exponential representation is supported for numbers (previously couldnE'userhat).

Bugs fixed

Avoidance of segmentation violations

« SEGV no longer occurs if an undeclared variable or event flag is referenced
» SEGV no longer occurs if the last bit of an event mask is used

Avoidance of race condition which prevented monitors from being enabled

If a connection handler was called befoseq_pvMonitor , a race condition meant that the
ca_add_array_event routine might never get called.

Bugs introduced

Sequencer deletion is unreliable

This bug may be unrelated to the sequencer. In any case, sequencer deletion is unreliable and code
which could cause the VxWorks shell to hang when trying to delete a sequence has been disabled
pending understanding of the underlying problem.

Miscellaneous
Compilation warnings have been avoided wherever possible.
A 60Hz system clock frequency is no longer assumed.

4 State Notation Language and Sequencer Users Guide Document Revision: 2.0

1. Introduction

Version 2.0 changes

Replaced VxWorks dependencies with OSI routines

All VxWorks routines have been replaced with the appropriate OSI (Operating System Independent)
routines.

Some VxWorks routines do not yet have OSI equivalents and have been commentediout (,
log file supporttaskldFigure |, task delete hooks and sequencer deletion).

Unused (and undocumentedX_ OPToption has been removed.

Replaced direct channel access calls with new PV API

All CA calls have been replaced with equivalent calls to a new PV (process variable) APl which can
be layered on top of not just CA but also other message systems.

Added optional generation of main program

The new+m(main) option generates a Unix main program whose single argument is a list of macro
assignments.

Under Unix, the main thread reads from standard input and can exssg®how, seqChanShow
etc. on demand. EOF causes the sequencer to exit.

Fixed more bugs

Several minor (and long-standing) bugs were found while testing with Purify, e.g. a NULL pointer de-
reference and reading outside the bounds of a macro value string.

Improved error reporting

Error reporting is now more consistent. It is currently just usmigsPrintf

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 5

2. State Notation Language Concepts

2. State Notation Language Concepts

The State Transition Diagram

The state transition diagram is a graphical notation for specifying the behavior of a control system in
terms of control transformations. The state transition diagram or STD serves to represent the action
taken by the control system in response to both the present internal state and some external event or
condition. To understand the state notation language one must first understand the STD schema.

A simple STD is shown in figure 1. In this example the level of an input voltage is sensed, and a light
is turned on if the voltage is greater than 5 volts and turned off if the voltage becomes less than 3
volts. Note that the output or action depends not only on the input or condition, but also by the current
memory or state. For instance, specifying an input of 4.2 volts does not directly specify the output, but
depends on the current state.

Light is Off

V>5 V<3

Turn light off

Turn light on

Lightis On

Figure 1: A simple state transition diagram

Elements of the State Notation Language
The following SNL code segment expresses the state transition diagram in figure 1:

state light_off {
when (v > 5.0){
light = TRUE;
pvPut(light);
} state light_on
}

state light_on {
when (v < 3.0){
light = FALSE;
pvPut(light);
} state light_off

6 State Notation Language and Sequencer Users Guide Document Revision: 2.0

2. State Notation Language Concepts

You will notice that the SNL appears to have a structure and syntax that is similar to the C language.
In fact the SNL uses its own syntax plus a subset of C, such as expressions, assignment statements,
and function calls. This example contains two code blocks that define sligftets:off and

light on . Within these blocks arevhen statements that define the events (“v > 5.0” and “v <

3.0"). Following these statements are blocks containing actions (C statementgvHite function

writes or puts the value in the variallight to the appropriate database channels. Finally, the next
states are specified following the action blocks.

For the previous example to execute properly the variablesd light must be declared and
associated with database channels using the following declarations:

float v;

short light;

assign v to “Input_voltage”;
assign light to “Indicator_light”;

The aboveassign statements associate the variablesand light with the database channels
“Input_voltage” and “Indicator_light” respectively. We want the valuevotfo be updated from the
database whenever it changes. This is accomplished with the following declaration:

monitor v;

Whenever the value of the database changes the valuewoll likewise change (within the time
constraints of the underlying system).

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 7

2. State Notation Language Concepts

A Complete State Program
Here is what the complete state program for our example looks like:

program level_check

float v;

assign v to “Input_voltage”;
monitor V;

short light;

assign light to “Indicator_light”;

ss volt_check {
state light_off

when (v >5.0) {
/* turn light on */
light = TRUE;
pvPut(light);
} state light_on
}

state light_on

when (v < 5.0) {
[* turn light off */
light = FALSE;
pvPut(light);
} state light_off
}
}

To distinguish a state program from other state programs it must be assigned a name. This was done
in the above example with the statement:

program level _check

As we’'ll see in the next example, we can have multiple state transition diagrams in one state program.
In SNL terms these are referred to state setsEach state program may have one or more named
state sets. This was denoted by the statement block:

ss volt_check { ...}

Adding a Second State Set

We will now add a second state set to the previous example. This new state set generates a changing
value as its output (a triangle function with amplitude 11). This output is the same channel that is used
as input by therolt_check state set.

8 State Notation Language and Sequencer Users Guide Document Revision: 2.0

2. State Notation Language Concepts

First, we add the following lines to the declaration:

float vout;
float delta;
assign vout to “tsl:ail”;

Next we add the following lines after the first state set:

Ss generate_voltage {
state init {
when () {
vout = 0.0;
pvPut(vout);
delta = 0.2;
} state ramp
}
state ramp {
when (delay(0.1) {
if ((delta > 0.0 && vout >=11.0) ||
(delta < 0.0 && vout <=-11.0))
delta = -delta; /* change direction */
vout += delta;
} state ramp;

}

The above example exhibits several concepts. First, note thavhle statement in statenit

contains an empty event expression. This means unconditional execution of the transition. Because
init is the first state in the state set, it is assumed to be the initial state. You will find this to be a
convenient method for initialization. Also, notice that tlaenp state always returns to itself. This is a
permissible and often useful construction. The structure of this state set is shown in the STD in figure

2.

START

Figure 2. Structure of generate_voltage State

EPICS Release: 3.13

State Notation Language and Sequencer Users Guide 9

2. State Notation Language Concepts

The final concept introduced in the last example isdbkay function. This function returns a TRUE
value after a specified time interval from when the state was entered. The paramd&ayo
specifies the number of seconds, and must be a floating point value (constant or expression).

At this point, you may wish to try an example with the two state sets. You can jump ahead and read
parts of Sections 3-5. You probably want to pick a uniqgue name for your database channels, rather
than the ones used above. You may also wish to replacevReit statements withprintf
statements to display “High” and “Low” on your console.

Database Names Using Macros

One of the features of the SNL and run-time sequencer is the ability to specify the names of database
channels at run-time. This is done by using macro substitution in the database name. In our example
we could replace thassign statements with the following:

assign Vin to “{unit}:ail”;
assign Vout to “{unit}:aol”;

The string within the curly brackets is a macro which has a name (“unit” in this case). At run-time
you give the macro a value, which is substituted in the above string to form a complete database
name. For example, if the macro “unit” is given a name “DTL_6:CM_2", then the run-time channel
name is “DTL_6:CM_2:ail”. More than one macro may be specified within a string, and the entire
string may be a macro. See Section 4. on page 19 for more on macros.

Data Types

The allowable variable declaration types correspond to the C tgbes:, unsigned chat short

unsigned short int , unsigned int long , unsigned long ,float , anddouble . In addition

there is the typestring , which is a fixed array size of typehar . Variables having any of these

types may be assigned to a database channel. The type declared does not have to be the same as the
native database value type. The conversion between types is performed at run-time.

You may specify array variables as follows:
long arc_wif[1000];

When assigned to a database channel the database operations, puiehtasare performed for the
entire array.

10 State Notation Language and Sequencer Users Guide Document Revision: 2.0

2. State Notation Language Concepts

Arrays of Channels

Often it is necessary to have several associated database channels. The ability to assign each elemen
of an array to a separate channel can significantly reduce the code complexity. The following
illustrates this point:

float Vin[4];

assign Vin[0Q] to “{unit}1”;
assign Vin[1] to “{unit}2”;
assign Vin[2] to “{unit}3”;
assign Vin[3] to “{unit}4”;

We can then take advantage of Yfie array to reduce code size as in the following example:

for(i=0;i<4;i++) {
Vin[i] = 0.0;
pvPut (Vin[i]);

}

We also have a shorthand method for assigning channels to array elements:
assignVin to { “{unit}1”, “{unit}2”, “{unit}3”, “{unit}4” },
Similarly, the monitor declaration may be either by individual element:

monitor Vin[O];
monitor Vin[1];
monitor Vin[2];
monitor Vin[3];

Alternatively, we can do this for the entire array:
monitor Vin;
Double subscripts offer additional options.

double X[100][2];
assign X to {“apple”, “orange’};

The declaration creates an array with 200 elements. The first 100 elemeXtaref assigned to
apple , and the second 100 elements are assignectge .

Dynamic Assignment

You may declare a variable and defer its assignment until later by assigning it to an empty string as
follows:

float Xmotor,
assign Xmotor to “”; /* not assigned yet */

[* dynamic assignment */
pvAssign(Xmotor, “bpm04:motor_X");

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 11

2. State Notation Language Concepts

Unassigned Channels

You may also de-assign a variable from a channel as follows:
pvAssign(Xmotor, “);

The total number of assigned channels is returned by the fupethssignCount
NumAssigned = pvAssignCount();

Status of Database Channels

Most database record types have associated with them an alarm status and alarm severity. You can
obtain the alarm status and severity withgliStatus andpvSeverity functions. For example:

when (pvStatus(x_motor) != NO_ALARM) {
printStatus(“X motor”,
pvStatus(x_motor), pvSeverity(x_motor));

These routines are described in Section 5. on page 23. The values for alarm status and severity are
defined in the EPICS include figdgarm.h

You can obtain the time stamp with tTimeStamp function. For example:
time = pvTimeStamp(x_motor);

Version 2.0: EPICS-specific types are no longer ugedStatus will return an enumeration of type
pvStat , pvSeverity will return an enumeration of typpvSevr , and pvTimeStamp will
return a structure of typpvStamp . All of these are defined in the include fig@.h and are listed in
XXX.

Synchronizing State Sets with Event Flags

State sets within a state program may be synchronized through the use of event flags. Typically, one
state set will set an event flag, and another state set will test that event flag withemeclause. The

sync statement may also be used to associate an event flag with a database channel that is being
monitored. In that case whenever a monitor returns, the corresponding event flag is set. Note that this
provides an alternative to testing the value of the monitored channel. This is particularly valuable
when the channel being tested is an array or when it can have multiple values and an action must
occur for any change. See Section 6. on page 34 for an example using event flags.

Queuing Monitors

Neither testing the value of a monitored channel wheen clause nor associating the channel with an

event flag and then testing the event flag can guarantee that the sequence is aware of all monitors
posted on the channel. Often this doesn’t matter, but sometimes it does. For example, a channel may
transition to 1 and then back to O to indicate that a command is active and has completed. These

12 State Notation Language and Sequencer Users Guide Document Revision: 2.0

2. State Notation Language Concepts

transitions may occur in rapid succession. This problem can be avoided by using thsyme
statement to associate a channel with a queue and an event flag. The@et® function retrieves
and removes the head of queue. See xxx for an example using queued monitors.

Asynchronous Use of pvGet()

Normally thepvGet operation completes before the function returns, thus ensuring data integrity.
However, it is possible to use these functions asynchronously by specifyirgtbempile flag (see
Section 3. on page 15). The operation may not be initiated until the action statements in the current
transition have been completed and it could complete at any later time. To test for completion use the
functionpvGetComplete , which is described in Section 5. on page 23.

Connection Management

All database channel connections are handled by the sequencer through the channel access interface
Normally the state programs are not run until all database channels are connected. However, with the
-c compile flag execution begins while the connections are being established. The program can test
for each channel’s connection status with gwConnected routine, or it can test for all channels
connected with the following comparison:

pvChannelCount() == pvConnectCount()

These routines are described in Section 5. on page 23. If a channel disconnects or re-connects during
execution of a state program the sequencer updates the connection status appropriately.

Multiple Instances and Reentrant Object Code

Occasionally you will create a state program that can be used in multiple instances. If these instances
are on separate processors, there is no problem. However, if more than one instance must be executec
simultaneously on a single processor, then the objects must be made reentrant usmgahapile

flag. With this flag all variables are allocated dynamically at run time, otherwise they are declared
static. With thetr flag all variables become elements of a common data structure, and therefore all
accesses to variables is slightly less efficient.

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 13

2. State Notation Language Concepts

Database Variable Element Count

All database requests for database variables that are arrays assume the array size for the element
count. However, if the database channel has a smaller count than the array size the smaller number is
used for all requests. This count is available with gw€ount function. The following example
illustrates this:

float wif[2000];
assign wf to “{unit}:CavField.FVAL”;
int LthWF;

LthWF = pvCount(wf);
for (i = 0; i < LthWF; i++) {

}
pvPut(wf);

Dynamic Assignment

You may dynamically assign or re-assign variable to database channels during the program execution
as follows:

float Xmotor;
assign Xmotor to “Motor_A_2";

sprintf (pvName, “Motor_%s _%d”, snum, mnum)
pvAssign (Xmotor[i], pvName);

An empty string in the assign declaration implies no initial assignment:
assign Xmotor to “;

Likewise, an empty string can de-assign a variable:
pvAssign(Xmotor, “);

The current assignment status of a variable is returned Ipy#&ssigned function as follows:
isAssigned = pvAssigned(Xmotor);

The number of assigned variables is returned bpvwiAssignCount function as follows:
numAssigned = pvAssignCount();

The following inequality will always hold:
pvConnectCount() <= pvAssignCount() <= pvChannelCount()

14 State Notation Language and Sequencer Users Guide Document Revision: 2.0

3. Compiling a State Program

3. Compiling a State Program

This section describes how to compile a state program in preparation for execution by the run-time
sequencer. You should first consult the user manual “EPICS: Setting Up Your Environment”.

The State Notation Compiler

The state notation compiler (SNC) converts the state notation language (SNL) into C code, which is
then compiled to produce a run-time object module. The C pre-processor (cpp) may be used prior to
the SNC. If we have a state program file named “test.st” then the steps to compile are similar to the
following:

snc test.st
gcce -c test.c -O ...additional compile options

Alternatively, using the C pre-processor:

cpp test.st test.i
snc test.i
gcc -c test.c -O ...

Using the C pre-processor allows you to include SNL filag¢lude directive), to usetdefine
directives, and to perform conditional compiling (étddef).

SNC
test.st test.c test.o

test.st

Figure 3: Two Methods of Compiling a State Program

Name of output file

The output file name will that of the input file with the extension replaced withThe-o option can
be used to override the output file name.

Actually the rules are a little more complex that the abose: and single-character extensions are
replaced withc ; otherwisec is appended to the full file name. In all casespverrides.

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 15

3. Compiling a State Program

Compiler Options

SNC provides 8 compiler options. You specify the option by specifying a key character preceded by a
plus or minus sign. A plus sign turns the option on, and a minus turns the option off. The options are:
+a AsynchronoupvGet , i.e. the program will proceed before the operation is completed.

-a pvGet returns after the operation is completed. This is the default if an option is not specified.

+c Wait for all database connections before allowing the state program to begin execution. This is the default.

-C Allow the state program to begin execution before connections are established to all channel.

+d Turn on run-time debug messages.

-d Turn off run-time debug messages. This is the default.

+e Use the new event flag mode. This is the default.

-e Use the old event flag mode (clear flags after executing a when statement).

+l Produce C compiler error messages with references to source (.st) lines. This is the default.

-l Produce C compiler error messages with references to .c file lines.

+m Generate a Unix C main program (a wrapper around a call sethéunction).

-m Do not produce a Unix C main program. This is the default.

+r Make the run-time code reentrant, thus allowing more than one instance of the state program to run on an 10C.

-r Run-time code is not reentrant, thus saving start-up time and memory. This is the default.

+w Display SNC warning messages. This is the default.

-w Suppress SNC warnings.

Options may also be included within the declaration section of a state program:

option +r;
option -c;

Cross Compilers and Makefiles

When the target architecture is different from the host’s, a cross compiler must be used. We
recommend setting upMakefile to compile state programs.

The C file produced by SNC must be compiled with the includeddgCom.h, which contains
many necessary definitions and declarations and which includes the ESDE®.h file. The
Makefile should reference the director(ies) where these files are located.

Version 2.0:seqCom.h is no longer dependent tsDefs.h

16 State Notation Language and Sequencer Users Guide Document Revision: 2.0

3. Compiling a State Program

Compiler Errors

The SNC detects most errors, displays an error message with the line number, and aborts further
compilation. Some errors may not be detected until the C compilation phase. Such errors will display
the line number of the SNL source file. If you wish to see the line number of the C file then you
should use thel (“ell”) compiler option. However, this is not recommended unless you are familiar
with the C file format and its relation to the SNL file.

Warnings from SNC

Certain inconsistencies detected by the SNC are flagged with error messages. An example would be a
variable that is used in the SNL context, but declared in escaped C code. These warnings may be
suppressed with the compiler option.

Compiling and linking a state program under Unix

Under Unix, thetmcompiler option should be used to create a C main program. The state program
should then be compiled with theREENTRANTmacro defined, and linked against the following
libraries:Seq, Osi , ca (if using channel access}om It may be necessary to sea©ki again after

Com It is also necessary to search the Operating System’s thread library and possibly other libraries
in order to resolve missing references.

For example, here is a full build of a simple state program from source under Solaris. It is assumed
that the appropriate EPICS version iguar/local/epics

cpp demo.st demo.i
snc +m demo.i

cc -D_REENTRANT \
-I. -1.. -1../../include -I../../include/os/solaris \
-l/usr/local/epics/base/include \
-l/lusr/local/epics/base/include/os/solaris \
-c demo.c

CC -0 demo demo.o \
-L/usr/local/epics/basel/lib/solaris \
-L../../lib/solaris \

-ISeq -10si -Ica -ICom -IOsi -Ipthread -Ithread \
-Isocket -Insl -Iposix4 -Im

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 17

3. Compiling a State Program

The main program generated by #tracompiler option is very simple. Here it is:

int main(int argc,char *argv(]) {
char *macro_def = (argc>1)?argv[1]:NULL;
return seq((void *)&demo, macro_def, 0);

}

The arguments are essentially the same as those taken sggh®utine. You can write your own if
you want, e.g. to link multiple state programs into the same Unix executable (this has not been tested,
but it should work).

18 State Notation Language and Sequencer Users Guide Document Revision: 2.0

4. Using the Run Time Sequencer

4. Using the Run Time Sequencer

In the previous section you learned how to create and compile some simple state programs. In this
section you will be introduced the run-time sequencer so that you can execute your state program. We
assume you are familiar with the VxWorks environment.

Loading the sequencer

The sequencer is unbundled from EPICS base and so must be loaded separately. The sequencer is
loaded into an IOC by the VxWorks loader from object files on the UNIX file system. Assuming the
IOC’s working directory is set properly, the following command will load the sequencer object code:

Id < seq

Loading a State Program

State programs are loaded into an IOC by the VxWorks loader from object files on the UNIX file
system. Assuming the 10C’s working directory is set properly, the following command will load the
object file “example.o”:

Id < example.o
This can be typed in from the console or put into a script file, such as the VxWorks start-up file.

Executing the State Program

Let's assume that the program name (from tregram statement in the state program) is
“level_check”. Then to execute the program under VxWorks you would use the following command:

seq &level_check

This will create one task for each state set in the program. The task ID of the first state set task will be
displayed. You can find out which tasks are running by using the VxWotlmmand.

Under Unix, you execute the state program directly. You might type the following:
level_check

Deleting the State Program Tasks

Deleting any one of the state set tasks will cause all tasks associated with the state program to be
deleted. For example, under VxWorks:

td “level_check”

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 19

4. Using the Run Time Sequencer

A state program may delete itself. The suggested method is to place the following statement at an
appropriate place within the program:

exit();

Under Unix, a state program may be killed by sending it a SIGTERM signal or entering an EOF
character.

Specifying Run-Time Parameters

You can specify run-time parameters to the sequencer. Parameters serve three purposes: (1) macro
substitution in process variable names, (2) for use by your state program, and (3) as special
parameters to the sequencer. You can pass parameters to your state program at run time by including
them in a string with the following format:

“paraml = valuel, param2 = valuez, ... “

For example, if we wish to specify the value of the macro “unit” in the example in the last chapter, we
would execute the program with the following command:

seq &level_check, “unit=DTL_6:CM_2"
This works just the same under Unix. The above example becomes:
level_check “unit=DTL_6:CM_2"

Parameters can be accessed by your program with the furmotieWalueGet , which is described
in Section 5. on page 23. The following built-in parameters have special meaning to the sequencer:

logfile = filename

This parameter specifies the name of the logging file for the run-time tasks associated with the state
program. If none is specified then all log messages are written to the console (standard output under
Unix).

name = task _name

Normally the task names are derived from the program name. This parameter specifies an alternative
base name for the run-time tasks.

stack = stack_size
This parameter specifies the stack size in bytes (it's ignored under Unix).
priority = task_priority

This parameter specifies the initial task priority when the tasks are created. Thaaskupriority
must be an integer between 1 and 255 (it's ignored under Unix).

Examining the State Program
Under VxWorks, you can examine the state program by typing:
seqShow “level_check”

20 State Notation Language and Sequencer Users Guide Document Revision: 2.0

4. Using the Run Time Sequencer

This will display information about each state set (e.g. state set names, current state, previous state).
You can display information about the database channels associated with this state program by typing
either of:

seqChanShow “level_check”
seqChanShow “level_check”, “DTL_6:CM_2:ail”
seqChanShow “level_check”, “-”

You can display information about monitor queues by typing:
seqQueueShow “level_check”

The first parameter teeqShow, seqChanShow andseqQueueShow is either the task identifier

(tid) or the task name of the state program task. If the state program has more than one tid or name,
then any one of these can be used. The second parameter is a valid channel naie, gliéw only

those channels which are disconnected 6t show only those channels which are connected. The
seqChanShow andseqQueueShow utilities will prompt for input after showing the first or the
specified channel; ent&@ETURNbr a signed number to view more channels or queues; egten*®

quit.

If you wish to see the task names, state set names, and task identidirstbde programs type:
seqShow

Similar but shorter commands can be issued under Unix. Valid commandshave chan and
gueue . They are abbreviable.

Sequencer Logging

The sequencer logs various information that could help a user determine the health of a state program.
Logging goes to the console by default, but may be directed to any file by specifying the logfile
parameter as described above.

What Triggers an Event?

The run-time sequencer uses four methods to test an event:

» a database value returns from database (monifpr@et)
» atime delay has elapsed

» an event flag is set or cleared

 any channels connect or disconnect

When one of these events occur, the sequencer executes the apprepeaatstatements based on

the current states and the particular event or events. Whenever a new state is entered, the
correspondingvhen statements for that state are executed immediately, regardless of the occurrence
of any of the above events.

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 21

4. Using the Run Time Sequencer

Prior to Version 1.8 of the sequencer the event flags were cleared after a when statement executed.
Currently, event flags must be cleared with eite€festAndClear or efClear |, unless thee
option was chosen.

22 State Notation Language and Sequencer Users Guide Document Revision: 2.0

5. State Notation Language Syntax

5. State Notation Language Syntax

This section formalizes the state notation language syntax using a variant of BNF (Backus-Naur
Form). The idea is that the meaning will be clear without explanation. However, here are some
explanatory notes.

« words inteletypefont are to be taken literally (“terminals”)

» words inbold italicsare syntactic terms which will be defined below (“nonterminals”), except in a few cases where
the meaning is obvious

» where the name of a nonterminal begins with the waptional and it is enclosed in square brackets, that term is
optional

» where a term is followed by an ellipsis.{), it may optionally be repeated (so if the term was not optional this
means that there can be one or more instances of it; if the term was optional this means that there can be zero or
more instances of it)

» where a term is followed by a separator (e.g. a comma) and an ellipsis, it is to be understood that the separator will
separate each repeated instance of the term

State Program
A state program has the following structure:

program program_nameé
declarations
[state_sdt...

The program name may be followed by a parameter list:

program program_namé" parameter_list);

Declarations

Variable declarations are similar to C except that the types are limited to the following, no
initialization is permitted, and only one variable may be declared per declaration statement.

char variable_name
short variable_nam¢
int variable_name
long variable_name
float variable_name
double variable_name
string variable_name

Type string produces an array of char with length equal to the condtelK_STRING_SIZE
which is defined in one of the included header files. Unsigned types and pointer types may also be
specified. For example:

unsigned short * variable_name

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 23

5. State Notation Language Syntax

Variable may also be declared as arrays.

char variable_nam¢ array_lengtH;
short variable_nam¢ array_lengtH;
int variable_namé¢ array_length;
long variable_nam¢ array_lengtH;
float variable_nam¢ array_lengtH;
double variable_namé¢ array_length;
char variable_nam¢ array_lengtH][array_length;
short variable_nam¢ array_lengtl][array_length;
int variable_nam¢ array_lengt[array_lengtH;
long variable_nam¢ array_lengtH][array_length;
float variable_nam¢ array_lengtl][array_length;

double variable_nam¢ array_length[array_lengtH;

Note that we have not yet implemented arrays of strings.

Assignment of a Variable to a Database Channel

Once a variable is declared, it may be assigned to a database channel. Thereafter, that variable is used
to perform database operations. All of the following are variations on assignment:

assign variable_nameto * database_namé,;
assign variable_nam¢ index] t0 “ database_namé,;
assign variable_nameto { “ database_namé ... } ;
A database name may contain one or more macro names enclosed in brgckets} “ . Macros

are named following the same rules as C language variables.

For database variable declared as arrays, the requested count is the length of the array or the native
count for the database channel, whichever is smaller. The native count is determined when the initial
connection is established. Pointer types may not be assigned to a database channel.

Monitoring a Database Channel

To make the state program event-driven the input variables can be monitored. Monitored variables are
automatically updated with the current database value. The variable must first be assigned to a
database channel.

monitor db_variable_namg
monitor db_variable_nampindex];

Declaring Event Flags
Event flags are declared as follows:

evilag event_flag_namg

24 State Notation Language and Sequencer Users Guide Document Revision: 2.0

5. State Notation Language Syntax

Associating an Event Flag with a Database Channel

An event flag may be associated with a database channel. When a monitor returns on that channel the
corresponding event flag is set.

sync variable_name event_flag nare

Associating an Event Flag with a Queued Database Channel

An event flag may be associated with a queued database channel. The queue size defaults to 100 but
can be overridden on a per-channel basis. When a monitor returns on that channel the associated value
is written to the end of the queue and the corresponding event flag is set. If the queue is already full,
the last entry is overwritten. Only scalar items can be accommodated in the queue (if the channel is
array-valued, only the first item will be written). TpeGetQ function reads items from the queue.

syncQ variable_name event_flag_name [optional_queue_siZe

Specifying Compiler Options

A compiler option is specified as follows:
option option_name

Possible options are given in Section 3. on page 15, and must include€ tiré‘* ” sign. Example:
option +r; /* make code reentrant */

Structure of a State Set
State_seis defined as:
SS state_set_nam¢ state_def. }
State_defis defined as:
state state_name[[optional_option_def ... event_actiong
Optional_option_deis defined as:
option state_option_namje
Event_actionds defined as:

[optional_entry_actiof ...
event_action..
[optional_exit_actiod ...

Optional_entry_actionis defined as:

entry { statement.. }

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 25

5. State Notation Language Syntax

Event_actionis defined as:

when (expression) { statement. } state new_state
Optional_exit_actionis defined as:

exit { statement. }

Any entry{} blocks are executed when the state is enteseid} blocks are executed when the
state is left. See the optiors and-x below for more details about controlling this behavior. Note
that the statements in all entry blocks of a state are executed before any of the expressieTg)n
conditions are evaluated.

Specifying State Options

Some options may be specified for a state usingapion keyword. Currently there are three
allowable optionst , e andx. The option string must be preceded by ‘or “-”, for instance
option -te

The options are:

-t Don't reset the time specifying when the state was entered if coming from the same state. When this option is used
the delay() built-in function will return whether the given time delay has elapsed from the moment the current state
was entered from a different state, rather than from when it was entered for the current iteration.

-e Executeentry{} blocks even if the previous state was the same as the current state.

-X Executeexit {} blocks even if the next state is the same as the current state.

+t , +e and+x are also permitted, though* is interpreted as “perform the default action for this
option”. For instanception +tx would have the same effect as if no option specification were
given fort andx, so its use is only documentary. Note that more than one option line is allowed, and
that syntax must be used to specify bothdnd “ ” options, for instance:

state low

{
option -e; /* Do entry{} every time ... */
option +x; /* but only do exit{} when really leaving */

entry { ... }
exit{ ...}
}
Statements

A statement may be an assignment statement dr aelse , for , orwhile statement. These may
contain expressions as follows:

* brackets{ ...}
« variables (may have subscript)
* binary operatorst - * / & | && << ...

26 State Notation Language and Sequencer Users Guide Document Revision: 2.0

5. State Notation Language Syntax

 assignment operators: += *= ..

» auto increment and auto decrement operators:-
 parenthesis

 pointer and address operatars:

* structure operators: ->

« functions

Although structure definitions and declarations are not recognized by the SNL, the structure operators
are permitted.

Examples of statements in SNL:

pres3 = smooth (&p3[20], i+2);
for (j =0;j <10; j++)

{
X[j] = 4.0*(y[j]/3.0 + sin(2.*pi*)));
}
Example of a state definition in SNL:
state low
{
option -te;
entry
{
printf(*“Will do this on each entry”);
}
when(v>5.0)
{
printf(“now changing to high\n”);
} state high
when(delay(.1))
{
[* Pause of .1 on every iteration */
} state low
}

Built-in Functions

The following special functions are built into the SNL. In most cases the state notation compiler
performs some special interpretation of the parameters to these functions. Therefore, some are either
not available through escaped C code or there use in escaped C code is subject to special rules. The
term db_variable_nameefers to any variable that is assigned to a database channel. When using
such a variable, the function provides the association of the value or other characteristics of the
channel to the variable.

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 27

5. State Notation Language Syntax

delay

int delay(float delay_in_seconds
The delay function returnBRUEIf the specified time has elapsed from entering the state. It should be
used only within avhen expression.
pvPut

int pvPut(db_variable_namp
This function puts or writes the value to the database channel. The function returns the status from the
channel access layer (eEBCA_NORMAfor success). It does not wait for the database channel write
to be complete. Completion must be inferred by other means.
pvGet

int pvGet(db_variable_namg

This function gets or reads the value from the database channel. The function returns the status from
the channel access layer (ef2A__NORMAIor success). By default, the state set will block until the
read operation is complete. The asynchronea3 ¢ompile option should be used to prevent this.

pvGetQ
int pvGetQ(db_variable_namg

This function removes the oldest value from a database channel’s queue (the database channel should
have been associated with a queue and an event flag viaytief) statement) and updates the
corresponding local sequencer variable. Despite its name, this function is really closer to
efTestAndClear than it is topvGet . It returnsTRUEIf the queue was not empty.

pvGetQ should only be called from withinva@hen clause.

pvFreeQ
int pvFreeQ(db_variable_nampg

This function deletes all entries from a database channel’s queue (the database channel should have
been associated with a queue and an event flag v&y1tie€ statement).

pvGetComplete
int pvGetComplete(db_variable_nam

This function return§ RUEIf the last get for this channel is completed, i.e. the value in the variable is
current. This call is appropriate only if the asynchroneag compile option is specified.

pvMonitor
int pvMonitor(db_variable_nam

This function initiates a monitor on the database channel.

28 State Notation Language and Sequencer Users Guide Document Revision: 2.0

5. State Notation Language Syntax

pvStopMonitor
int pvStopMonitor(db_variable_namg
This function terminates a monitor on the database channel.

pvFlush
int pvFlush()
This function causes channel access to flush the input-output buffer. This call is appropriate only if
the asynchronous-&) compile option is specified.
pvCount
int pvCount(db_variable_namp
This function returns the element count associated with the database channel.

pvStatus
int pvStatus(db_variable_namg

This function returns the current alarm status for the database channeH(BIgALARM). The
status and severity are only valid aftgn@et call or when a monitor returns.

Version 2.0: The value returned is one of theStat enumerations.

pvSeverity

int pvSeverity(db_variable_nam
This function returns the current alarm severity (MIINOR_ALARM
Version 2.0: The value returned is one of theSevr enumerations.

pvTimeStamp
TS_STAMP pvTimeStamp(db_variable_namg

This function returns the time stamp for the lpstset or monitor of this variableThe compiler does
recognize type TS_STAMP. Therefore, variable declarations for this type should be in escaped C code.
This will generate a compiler warning, which can be ignored.

Version 2.0: The value returned is of tygeStamp .

pVvASsign
char* pvAssign(db_variable_namg database_nampe

This function assigns or re-assigned the varialle variable nameto database name If
database_namés an empty string oNULL thendb_variable_names de-assigned (not associated
with any process variable).

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 29

5. State Notation Language Syntax

pvAssigned
int pvAssigned(db_variable_namg
This function returnRUEIf the channel is currently assigned.

pvConnected
int pvConnected(db_variable_namp

This function return3 RUEIf the channel is currently connected.

pvindex
int pvindex(db_variable_namg
This function returns the channel index associated with a database channel. See “User Functions
within the State Program” on page 32.
pvChannelCount
int pvChannelCount()
This function returns the total number of channels associated with the state program.

pvAssignCount
int pvAssignCount()

This function returns the total number of channels in this program that are assigned to database
channels. Note: if all channels are assigned then the following expres§RbE

pvAssignCount() == pvChannelCount()

pvConnectCount
int pvConnectCount()

This function returns the total number of channels in this program that are connected with database
channels. Note: if all channels are connected then the following expres§RUES

pvConnectCount() == pvChannelCount()

efSet
void efSet(event_flag_nampg
This function sets the event flag and causes the execution wfiteée statements for all state sets that
are pending on this event flag.
efTest
int efTest(event_flag_namp

This function returns TRUE if the event flag was set.

30 State Notation Language and Sequencer Users Guide Document Revision: 2.0

5. State Notation Language Syntax

efClear
int efClear(event_flag_namp

This function clears the event flag and causes the execution g@flitee statements for all state sets
that are pending on this event flag.

efTestAndClear

int efTestAndClear(event_flag_namp
This function clears the event flag and returRYEIf the event flag was set.
efTestAndClear should only be called from withinvahen clause.

macValueGet
char* macValueGet(char * macro_name_string

This function returns a pointer to a string that is the value for the specified macro name. If the macro
does not exist, it returnsNJLL

Comments

C-type comments may be placed anywhere in the program.

Escape to C Code

Because the SNL does not support the full C code standard, C code may be escaped in the program.
The escaped code is not compiled by SNC, but is passed the “cc” compiler. There are two escape
methods allowed:

1. Any code betweeth%and the next newline character is escaped. Example:
%% for (i=0; i < NVAL; i++) {

2. Any code betwee¥{ and}% is escaped. Example:
%{
extern float smooth();

extern LOGICAL accelerator_mode;

1%
If you are using the C preprocessor prior to compiling veitit , and you wish to defer interpretation
of a preprocessor directivé# tatemeny, then you should use the form:

%%#include <ioLib.h>
%%#include <abcLib.h>

Any variable declared in escaped C code and used in SNL code will be flagged with a warning
message by the SNC. However, it will be passed on to the C compiler correctly.

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 31

5. State Notation Language Syntax

Exit Procedure

When a state set task is deleted, all state set tasks within the state program are also deleted. The state
program may specify a procedure to run prior to task deletion. This is specified as follows:

exit { exit_code}

The exit code may be one or more statements as described above. However, no database functions
may be called within the exit code.

This procedure should not be confused with the exit block of a state, which has the same syntax, but is
executed at each transition from a state to the next state.

User Functions within the State Program

The last state set may be followed by C code, usually containing one or more user-supplied functions.
Example:

program example { e}

/* last SNL statement */

%{

LOCAL float smooth (pArray, numElem)

(.}
1%

The built-in SNL functions such apvGet cannot be directly used in user-supplied functions.
However, most of the built-in functions have a C language equivalent, which begin with the prefix
seqg_(e.g.pvGet becomesseq_pvGe}. These C functions must pass a parameter identifying the
calling state program, and if a database variable name is requirechdheel indef that variable

must be supplied. This channel index is obtained fronptHadex function. Furthermore, if the code

if complied with the+r option the database variables must be referenced as a structure element as
described in “Variable Modification for Reentrant Option” on page 33. Examination of the
intermediate C code that the compiler produces will indicate how to use the built-in functions and
database variables.

Variable Extent

All variables declared in a state program are made static (non-global) in the C file, and thus are not
accessible outside the state program module.

32 State Notation Language and Sequencer Users Guide Document Revision: 2.0

5. State Notation Language Syntax

Variable Modification for Reentrant Option

If the reentrant option+r) is specified to SNC then all variables are made part of a structure.
Suppose we have the following declarations in the SNL:

int swl;
float v5;
short wf2[1024];

The C file will contain the following declaration:

struct UserVar {
int swl;
float Vv5;
short wf2[1025];

I3
The sequencer allocates the structure area at run time and passes a pointer to this structure into the
state program. This structure has the following type:

struct UserVar *pVar,
Reference to variabewl is made as:
pVar->swl

This conversion is automatically performed by the SNC for all SNL statements, but you will have to
handle escaped C code yourself.

Default Run-time Parameters

Parameters to the state program may be supplied aft@rdggam statement within the SNL and as
the second argument to the run-time sequencer. The format for parameters is:

‘macro_name= macro_value
Examples:

program example (“logfile = example.log”)
int VXy;
assign Vxy to “HV{unit}:VXY";

At run-time the default fologfile can be over-ridden as follows:
seq &example, “logfile=ex1.log, unit=1"

The parameters specified at run time supersede those specified affeodheem statement. These
parameters may also be used to specify the values for the macros used in the database names.

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 33

6. Examples of State Programs

6. Examples of State Programs

Entry and exit action example
The following state program illustrates entry and exit actions.

program snctest

float v;
assign v to “grw:xxxExample”;
monitor v;
ss ssl
{
state low
{
entry
{
printf(*“Will do this on entry”);
Lntry
{
printf(“Another thing to do on entry”);
\}/vhen(v>5.0)
{ printf(“now changing to high\n”);
} state high
when(delay(.1)) { } state low
exit
{
printf(*Something to do on exit”);
}
}
state high
{

when(v<=5.0)

{

printf(“changing to low\n”);
} state low
when(delay(.1)) { } state high

34

State Notation Language and Sequencer Users Guide

Document Revision: 2.0

6. Examples of State Programs

Dynamic assignment example

The following segment of a state program illustrates dynamic assignment of database variables to
database channels. We have left out error checking for simplicity.

program dynamic

option -c; /* don’t wait for db connections */
string sysName;

assign sysName to *“”;

long setpoint[5];
assign setpoint to {}; /* don’t need all five strings */

int i;
char str[30];

ss dyn {
state init {
when () {

sprintf (str, “MySys:%s”, “name”);

pVvAssign (sysName, str);

for (i=0;i<5;i++) {
sprintf (str, “MySys:SP%d\n”, i);
pVvAssign (setpoint[i], str);
pvMonitor (setpoint[i]);

}

} state process

}

state process {

}

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 35

6. Examples of State Programs

Complex example

The following state program contains most of the concepts presented in the previous sections. It
consists of four state sets: (&vel_det , (2)generate_voltage , (3) test_status ,and (4)
periodic_read . The state selevel _det is similar to the example in Section 2. on page 6. It
generates a triangle waveform in one state set and detects the level in another. Other state sets detect
and print alarm status and demonstrate asynchropeGet andpvPut operation. The program
demonstrates several other concepts, including access to run-time parameters with macro substitution
andmacValueGet , use of arrays, escaped C code, and VxWorks input-output.

Preamble

[* File example.st: State program example. */
program example (“unit=ajk, stack=11000")

float aol;
assign aol to “{unit};:aol”;
monitor aol,

float aoz;
assign ao2 to “{unit}:aol”;

float wf1[2000];
assign wfl to “{unit}:wfl.FVAL”;

short bil;
assign bil to “{unit}:bi1”;

float delta;
short prev_status;
short ch_status;

evilag efl;

evilag ef2;

option +r;

char *pmac; /* used to access program macros */

36 State Notation Language and Sequencer Users Guide Document Revision: 2.0

6. Examples of State Programs

level det state set

[f=================== Stgte SetS =======================—=—=—=—=%/
[* State set level det detects level > 5v & < 3v */
ss level_det {

state start {
when() {
fd =-1;
[* Use parameter to define logging file */
pmac = macValueGet(“output”);
if (pmac == 0 || pmac|[0] == 0)

{
printf(*No macro defined for \"output\"\n");
/* Use global console fd */
fd = ioGlobalStdGet(1);
}
else
fd = open(pmac, (O_CREAT | O_WRONLY), 0664);
if (fd == ERROR)
{
printf(*Can’t open %s\n”, pmac);
exit (-1);
}
}
fdprintf(fd, “Starting state program\n”);
} state init
}
state init {
/* Initialize */

when (pvConnectCount() == pvChannelCount()) {
fdprintf(fd, “All channels connectedly”);
bil = FALSE;
ao2 = -1.0;
pvPut(bil);
pvPut(ao2);
efClear(ef2);
efSet(efl);
} state low

when (delay(5.0)) {
fdprintf(fd, “...waiting\n”);
} state init

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 37

6. Examples of State Programs

state low {
when (aol > 5.0) {
fdprintf(fd, “High\n”);
bil = TRUE;
pvPut(bil);
} state high

when (pvConnectCount() < pvChannelCount()) {
fdprintf(fd, “Connection lost\n”);
efClear(efl);
efSet(ef2);

} state init

}

state high {
when (aol < 3.0) {
fdprintf(fd, “Low\n”);
bil = FALSE;
pvPut(bil);
} state low

when (pvConnectCount() < pvChannelCount()) {
efSet(ef2);
} state init

38 State Notation Language and Sequencer Users Guide

Document Revision: 2.0

6. Examples of State Programs

generate_voltage state set

[* Generate a ramp up/down */
Ss generate_voltage {
state init {
when (efTestAndClear(efl)) {
printf(“start ramp\n”);
fdprintf(fd, “start ramp\n”);
delta = 0.2;
} state ramp

}

state ramp {

when (delay(0.1)) {

if ((delta>0.0 && ao2 >=11.0) ||
(delta < 0.0 && a02 <=-11.0))
delta = -delta;

ao2 += delta;
pvPut(ao2);

} state ramp

when (efTestAndClear(ef2)) {
} state init

}

test status state set

[* Check for channel status; print exceptions */
ss test_status {
state init {
when (efTestAndClear(efl)) {
printf(“start test_status\n”);
fdprintf(fd, “start test_status\n”);
prev_status = pvStatus(aol);
} state status_check

}

state status_check {
when ((ch_status = pvStatus(aol)) != prev_status) {
print_status(fd, aol, ch_status, pvSeverity(aol));
prev_status = ch_status;
} state status_check

}

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide

39

6. Examples of State Programs

periodic_read state set

[* Periodically write/read a waveform channel. This uses
pvGetComplete() to allow asynchronous pvGet(). */
ss periodic_read {
state init {
when (efTestAndClear(efl)) {
wf1[0] = 2.5;
wfl[l] = -2.5;
pvPut(wfl);
} state read_chan

}

state read_chan {
when (delay(5.)) {
wfl1[0] += 2.5;
wfl[1] += -2.5;
pvPut(wfl);
pvGet(wfl);
} state wait_read

}

state wait_read {
when (pvGetComplete(wfl)) {
fdprintf(fd, “periodic read: ”);
print_status(fd, wf1[0], pvStatus(wfl), pvSeverity(wfl));
} state read_chan

}

exit procedure

[* Exit procedure - close the log file */
exit {
printf(“close fd=%d\n", fd);
if (fd > 0) && (fd != ioGlobalStdGet(1)))
close(fd);
fd =-1;

40 State Notation Language and Sequencer Users Guide

Document Revision: 2.0

6. Examples of State Programs

C functions

%{
[* This C function prints out the status, severity,
and value for a channel. Note: fd is passed as a
parameter to allow reentrant code to be generated */
print_status(int fd, float value, int status, int severity)

{
char *pstr;
switch (status)
{
case NO_ALARM: pstr = “no alarm”; break;
case HIHI_ALARM: pstr = “high-high alarm”; break;
case HIGH_ALARM: pstr = “high alarm”; break;
case LOLO_ALARM: pstr = “low-low alarm”; break;
case LOW_ALARM: pstr = “low alarm”; break;
case STATE_ALARM: pstr = “state alarm”; break;
case COS_ALARM: pstr = “cos alarm”; break;
case READ_ALARM: pstr = “read alarm”; break;
case WRITE_ALARM: pstr = “write alarm”; break;
default: pstr = “other alarm”; break;
}
fprintf (fd, “Alarm condition: \"%s\"“, pstr);
if (severity == MINOR_ALARM)
pstr = “minor”;
else if (severity == MAJOR_ALARM)
pstr = “major”;
else
pstr = “none’;
fdprintf (fd, “, severity: \"%s\", value=%g\n”, pstr, value);
}
1%

New features in Version 1.9

New Language Features

With this version we have incorporated many extensions to the state notation language. Some of these
changes offer significant advantage for programs and systems with a large number of database
channels.

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 41

6. Examples of State Programs

Number of Channels

The previous restriction on the number of database channels that could be defined no longer applies.
Only the amount of memory on the target processor limits the number of channels.

Array Assignments

Individual elements of an array may be assigned to database channels. This feature simplifies many
codes that contain groups of similar channels. Furthermore, double-subscripted arrays allow arrays of
waveform channels.

Dynamic Assignments

Database channels may now be dynamically assigned or re-assigned within the language at run time.

Hex Constants

Hexadecimal numbers are now permitted within the language syntax. Previously, these had to be
defined in escaped C code.

Time Stamp

The programmer now has access to the time stamp associated with a database channel.

Pointers

Variables may now be declared as pointers.

Sequencer Changes

The diagnostics included with the previous versions of the run-time sequencer were awkward to use
and did not always provide relevant information. We corrected this shortcoming in this version.
segShow

We enhanced theeqShow command to present more relevant information about the running state
programs.
segChanShow

The seqChanShow command now allows specification of a search string on the channel name,
permits forward and backward stepping or skipping through the channel list, and optionally displays
only channels that are not connected.

The syntax for displaying only channels that are not connected is
seqChanShow “<seq_program_name>""-"

ANSI Prototypes

SNC include files now use ANSI prototypes for all functions. To the programmer this means that an
ANSI compiler must be used to compile the intermediate C code.

42 State Notation Language and Sequencer Users Guide Document Revision: 2.0

6. Examples of State Programs

Fix for Task Deletion

Version 1.8 of the sequencer didn't handle the task deletion properly if a task tried to delete itself. We
corrected this in version 1.9.

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 43

6. Examples of State Programs

44 State Notation Language and Sequencer Users Guide Document Revision: 2.0

	State Notation Language and Sequencer Users Guide
	1. Introduction
	Note on Versions
	Overview
	Content of this Manual
	Omissions from this manual

	Copyright and Restrictions
	Notes on This Release
	New Language Features
	Bugs fixed
	Bugs introduced
	Miscellaneous
	Version 2.0 changes

	2. State Notation Language Concepts
	The State Transition Diagram
	Elements of the State Notation Language
	A Complete State Program
	Adding a Second State Set
	Database Names Using Macros
	Data Types
	Arrays of Channels
	Dynamic Assignment
	Unassigned Channels
	Status of Database Channels
	Synchronizing State Sets with Event Flags
	Queuing Monitors
	Asynchronous Use of pvGet()
	Connection Management
	Multiple Instances and Reentrant Object Code
	Database Variable Element Count
	Dynamic Assignment

	3. Compiling a State Program
	The State Notation Compiler
	Name of output file
	Compiler Options
	Cross Compilers and Makefiles
	Compiler Errors
	Warnings from SNC
	Compiling and linking a state program under Unix

	4. Using the Run Time Sequencer
	Loading the sequencer
	Loading a State Program
	Executing the State Program
	Deleting the State Program Tasks
	Specifying Run-Time Parameters
	Examining the State Program
	Sequencer Logging
	What Triggers an Event?

	5. State Notation Language Syntax
	State Program
	Declarations
	Assignment of a Variable to a Database Channel
	Monitoring a Database Channel
	Declaring Event Flags
	Associating an Event Flag with a Database Channel
	Associating an Event Flag with a Queued Database Channel
	Specifying Compiler Options
	Structure of a State Set
	Specifying State Options
	Statements
	Built-in Functions
	Comments
	Escape to C Code
	Exit Procedure
	User Functions within the State Program
	Variable Extent
	Variable Modification for Reentrant Option
	Default Run-time Parameters

	6. Examples of State Programs
	Entry and exit action example
	Dynamic assignment example
	Complex example
	Preamble
	level_det state set
	generate_voltage state set
	test_status state set
	periodic_read state set
	exit procedure
	C functions

	New features in Version 1.9
	New Language Features
	Sequencer Changes

