
W . M . K E C K O B S E R V A T O R Y

1 of 9

Sequencer
Update

w it is used1 2

ities

aining slides
97/05/15
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
EPICS COLLABORATION MEETING

Sequencer
Update

Contents

● Very brief overview of SNL (state notation language) and ho

● Description of changes that I have made

● Fuller description and example of new monitor queuing facil

● Presentation of wish-list

1. Some material has been borrowed from Andy Kozubal and Bob Dalesio’s SNC tr

2. More detail will be presented at SOSH talk on Tuesday morning

W . M . K E C K O B S E R V A T O R Y

2 of 9

Sequencer
Update

 transition diagrams into C code:
de to C, which is then compiled
r variables allow communication
riables

 (major upgrades with v1.9)
pported

5v):

.5) {
FALSE;
 light);
ff
97/05/15
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
EPICS COLLABORATION MEETING

Sequencer
Update

Overview

● SNL is a language designed specifically for translating state
❑ C-like: state notation compiler (SNC) converts SNL source co
❑ multiple parallel diagrams can be implemented; event flags o
❑ CA is directly integrated: channels appear as module-local va
❑ “just a CA client”; cantheoretically run on IOC or under Unix
❑ implemented by Andy Kozubal (LANL) to run under VxWorks
❑ port to Unix (XMSEQ) by Ben-chin Cha (ANL) is no longer su

● Typical uses:
❑ coordination of subsystems (e.g. automated startup)
❑ fault recovery (e.g. transition to safe state)
❑ access to Unix file-system on IOC (e.g. save / restore)

● The standard example (light on above 5.0v and off below 4.
state light_off {

when (v > 5.0) {
light = TRUE;
pvPut(light);

} state light_on
}

state light_on {
when (v < 4

light =
pvPut(

} state light_o
}

W . M . K E C K O B S E R V A T O R Y

3 of 9

Sequencer
Update

de

 ANL yet...

3.13 version):

et)

t
nel

on next slide)
 and monitor queue
e

ls
 are disconnected
97/05/15
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
EPICS COLLABORATION MEETING

Sequencer
Update

Changes that I have ma

● Apology: recent changes have not been propagated back to

● Minor changes (not mentioning things that made it into the R
❑ permitted~ (bitwise negation) operator and^L characters
❑ allowed wakeup of state sets on event flag clear (as well as s
❑ removed assumptions that system clock is running at 60Hz
❑ fixed variable names in some normally-disabled debug outpu
❑ fixed race condition when monitoring run-time-assigned chan

● Major changes (all in support of queued monitors; rationale
❑ newsyncQ statement for associating variable with event flag
❑ newpvGetQ() procedure to get first entry from monitor queu
❑ newpvFreeQ() procedure to empty a monitor queue
❑ newseqQueueShow() procedure to list monitor queue detai
❑ fixedseqChanShow() not to claim that unassigned channels

W . M . K E C K O B S E R V A T O R Y

4 of 9

Sequencer
Update

 (1)

s; typically we want to send a
e, and then monitor an “active” flag

action
ends

slave
97/05/15
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
EPICS COLLABORATION MEETING

Sequencer
Update

Queuing monitors: rationale

● At Keck, we use sequencers for controlling other sequencer
command to another (independent) sequencer, change stat
for completion, expecting it to becomeTRUE and thenFALSE

command

active?

time

go!

action
begins

master

(1) go!

(2) begin

(3) end

W . M . K E C K O B S E R V A T O R Y

5 of 9

Sequencer
Update

 (2)

d” monitors will be delivered in
p for the “begin” monitor until after
as effectively been lost.

e never started to process the

 queueing monitors and picking

w facilities without problems since

f the new facilities.

orted (we use dynamically assigned
sociated with a monitor queue, there
97/05/15
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
EPICS COLLABORATION MEETING

Sequencer
Update

Queuing monitors: rationale

● If the command completes immediately, the “begin” and “en
rapid succession and the master sequencer may not wake u
the “end” monitor has been delivered. The “begin” monitor h

● If this happens, the master sequencer will think that the slav
command and will typically time out.

● Accordingly, in July 1996 I proposed a means of (optionally)
them off one at a time in the sequencer code.

● I implemented the proposal and we have been using the ne
September 1996.

● On the next slides, I give an annotated example of the use o

● Note that the example does not use arrays, but they are supp
arrays to manage sets of subsystems). When an array is as
is a single queue per array, not per element.

W . M . K E C K O B S E R V A T O R Y

6 of 9

Sequencer
Update

 (1)

r variables and associate them

e” channel

ag and create a monitor queue
lts to 100) associating the event

le queue entries and send the

e likeefTestAndClear() ;
dest monitored value and copies
97/05/15
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
EPICS COLLABORATION MEETING

Sequencer
Update

Queuing monitors: example
program queueDemo

long command;
assign command to “slave:command”;

long active;
assign active to “slave:active”;
monitor active;

evflag activeFlag;
syncQ active activeFlag 50;

ss main {
state start {

when () {
pvFreeQ(active);
command = TRUE;
pvPut(command);

} state sent
}

state sent {
when (pvGetQ(active) && active) {

epicsPrintf(“-> active\n”);
} state active

Define sequence
with channels

Monitor the “activ

Define an event fl
(length 50; defau
flag withactive

Clear out any sta
command

pvGetQ() is quit
it dequeues the ol
it to active

W . M . K E C K O B S E R V A T O R Y

7 of 9

Sequencer
Update

 (2)
dle 5s timeout

e” processing is analogous to
ive” processing

dle 5s timeout

 again...
97/05/15
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
EPICS COLLABORATION MEETING

Sequencer
Update

Queuing monitors: example
when(delay(5.0)) {

epicsPrintf(“active timeout\n”);
} state done

}

state active {
when (pvGetQ(active) && !active) {

epicsPrintf(“-> done\n”);
} state done

when(delay(5.0)) {
epicsPrintf(“done timeout\n”);

} state done

}

state done {
when (delay(10.0)) {
} state start

}
}

Han

“don
“act

Han

and

W . M . K E C K O B S E R V A T O R Y

8 of 9

Sequencer
Update

ubal (several are from Ned Arnold
e from Renaud Barillère of CERN.

it from a state

or and local variables would be nice!)

sor macros provide a partial

ed in several places[note: also can be

 (including from ISRs)
97/05/15
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
EPICS COLLABORATION MEETING

Sequencer
Update

Wish list (1)

● This list is mostly based on one supplied to me by Andy Koz
of ANL). I have merged in some of my own wishes and som

● Minor additions:
❑ Allow action statements to be executed on entry to and on ex
❑ Support channel access put with callback (pvPutAck())
❑ Support more of the C language (initialization, ternary operat
❑ Allow an action not to reset timers

● Major additions:
❑ Optionally permit several state sets to share a single task
❑ Permit a “subroutine” state, callable as an action[note: pre-proces

solution to this]
❑ Permit (parametrized) hierarchical states that can be referenc

partially addressed by pre-processing]
❑ Provide hooks for external C code to set and test event flags
❑ Provide a comprehensive test suite

W . M . K E C K O B S E R V A T O R Y

9 of 9

Sequencer
Update

ith display elements

munity input on relative priorities.

s...
97/05/15
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
EPICS COLLABORATION MEETING

Sequencer
Update

Wish list (2)

● Longer-term additions:
❑ Once again support the sequencer under Unix
❑ Integrate with display managers to provide direct interaction w
❑ Allow sequencer dynamically to create internal CA database
❑ Define SNL in terms of C++ objects (or Java?)
❑ Documented handle on the C-code interface (????)

● It would be good to collect a fuller set and then get some com

● One problem: I don’t have any time or money to work on thi

	Contents
	Very brief overview of SNL (state notation language) and how it is used
	Description of changes that I have made
	Fuller description and example of new monitor queuing facilities
	Presentation of wish-list

	Overview
	SNL is a language designed specifically for translating state transition diagrams into C code:
	C-like: state notation compiler (SNC) converts SNL source code to C, which is then compiled
	multiple parallel diagrams can be implemented; event flags or variables allow communication
	CA is directly integrated: channels appear as module-local variables
	“just a CA client”; can theoretically run on IOC or under Unix
	implemented by Andy Kozubal (LANL) to run under VxWorks (major upgrades with v1.9)
	port to Unix (XMSEQ) by Ben-chin Cha (ANL) is no longer supported

	Typical uses:
	coordination of subsystems (e.g. automated startup)
	fault recovery (e.g. transition to safe state)
	access to Unix file-system on IOC (e.g. save / restore)

	The standard example (light on above 5.0v and off below 4.5v):
	state light_off {
	when (v > 5.0) {
	light = TRUE;
	pvPut(light);
	} state light_on
	}
	state light_on {
	when (v < 4.5) {
	light = FALSE;
	pvPut(light);
	} state light_off
	}

	Changes that I have made
	Apology: recent changes have not been propagated back to ANL yet...
	Minor changes (not mentioning things that made it into the R3.13 version):
	permitted ~ (bitwise negation) operator and ^L characters
	allowed wakeup of state sets on event flag clear (as well as set)
	removed assumptions that system clock is running at 60Hz
	fixed variable names in some normally-disabled debug output
	fixed race condition when monitoring run-time-assigned channel

	Major changes (all in support of queued monitors; rationale on next slide)
	new syncQ statement for associating variable with event flag and monitor queue
	new pvGetQ() procedure to get first entry from monitor queue
	new pvFreeQ() procedure to empty a monitor queue
	new seqQueueShow() procedure to list monitor queue details
	fixed seqChanShow() not to claim that unassigned channels are disconnected

	Queuing monitors: rationale (1)
	At Keck, we use sequencers for controlling other sequencers; typically we want to send a command ...
	master

	Queuing monitors: rationale (2)
	If the command completes immediately, the “begin” and “end” monitors will be delivered in rapid s...
	If this happens, the master sequencer will think that the slave never started to process the comm...
	Accordingly, in July 1996 I proposed a means of (optionally) queueing monitors and picking them o...
	I implemented the proposal and we have been using the new facilities without problems since Septe...
	On the next slides, I give an annotated example of the use of the new facilities.
	Note that the example does not use arrays, but they are supported (we use dynamically assigned ar...

	Queuing monitors: example (1)
	program queueDemo
	long command;
	assign command to “slave:command”;
	long active;
	assign active to “slave:active”;
	monitor active;
	evflag activeFlag;
	syncQ active activeFlag 50;
	ss main {
	state start {
	when () {
	pvFreeQ(active);
	command = TRUE;
	pvPut(command);
	} state sent
	}
	state sent {
	when (pvGetQ(active) && active) {
	epicsPrintf(“-> active\n”);
	} state active

	Queuing monitors: example (2)
	when(delay(5.0)) {
	epicsPrintf(“active timeout\n”);
	} state done
	}
	state active {
	when (pvGetQ(active) && !active) {
	epicsPrintf(“-> done\n”);
	} state done
	when(delay(5.0)) {
	epicsPrintf(“done timeout\n”);
	} state done
	}
	state done {
	when (delay(10.0)) {
	} state start
	}
	}

	Wish list (1)
	This list is mostly based on one supplied to me by Andy Kozubal (several are from Ned Arnold of A...
	Minor additions:
	Allow action statements to be executed on entry to and on exit from a state
	Support channel access put with callback (pvPutAck())
	Support more of the C language (initialization, ternary operator and local variables would be nice!)
	Allow an action not to reset timers

	Major additions:
	Optionally permit several state sets to share a single task
	Permit a “subroutine” state, callable as an action [note: pre-processor macros provide a partial ...
	Permit (parametrized) hierarchical states that can be referenced in several places [note: also ca...
	Provide hooks for external C code to set and test event flags (including from ISRs)
	Provide a comprehensive test suite

	Wish list (2)
	Longer-term additions:
	Once again support the sequencer under Unix
	Integrate with display managers to provide direct interaction with display elements
	Allow sequencer dynamically to create internal CA database
	Define SNL in terms of C++ objects (or Java?)
	Documented handle on the C-code interface (????)

	It would be good to collect a fuller set and then get some community input on relative priorities.
	One problem: I don’t have any time or money to work on this...

