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● Brief overview of EPICS SNL (state notation language) and

● Extent to which the EPICS tool is specific to EPICS

● Implications of port to Unix / CDEV environment

● EPICS sequencer wish list

1. There is some overlap with the sequencer presentation given at the collaborators

2. Some material has been borrowed from Andy Kozubal and Bob Dalesio’s SNC tr

3. Some material has been borrowed from Ned Arnold’s state notation language ov
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Overview (1)

● EPICS SNL is a language designed specifically for translatin
code:
❑ based on Mealy machine: actions are associated with events
❑ C-like: state notation compiler (SNC) converts SNL source co
❑ C code can be directly embedded (and external functions can
❑ multiple parallel diagrams can be implemented; event flags o
❑ EPICS CA (channel access) is directly integrated: channels a
❑ “just a CA client”; cantheoretically run on IOC or under Unix
❑ implemented by Andy Kozubal (LANL) to run under VxWorks
❑ port to Unix (XMSEQ) by Ben-chin Cha (ANL) is no longer su

● Typical uses:
❑ coordination of subsystems (automated startup or shutdown,
❑ enforcing prudent operational procedures (gateway between 
❑ fault detection (for complex fault modes which are not tied to 
❑ fault recovery (transition to safe state on detection of fault)
❑ access to Unix file-system on IOC (save / restore)
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● The standard example (light on above 5.0v and off below 4.

Light is off

Light is on

Start

v > 5.0

Turn light on

v < 4.5

Turn light off

program lightDemo

double v; /* module-local var
assign v to “demo:volts”;
monitor v; /* “demo:volts” is C

long light;
assign light to “demo:light”;

ss main { /* “ss” means “stat

state lightIsOff {
when ( v > 5.0 ) {

light = TRUE; p
} state lightIsOn

}

state lightIsOn {
when ( v < 4.5 ) {

light = FALSE; p
} state lightIsOff

}
}
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Overview (3)

● More aboutassign  andmonitor :
❑ assign  makes an association between a variable and a nam
❑ this association can be dynamic; you can change channel na
❑ monitor  arranges for the variable always to have the curren
❑ event flags can be used to achieve finer control (e.g. wake-up on c

● More aboutwhen() :
❑ states can have multiplewhen() clauses; the body of the first o
❑ on entry to a state, when() conditions are re-evaluated; if noneT

event (no polling)

● More about state sets:
❑ a sequencer program may contain multiple state sets, each on

control and corresponds to a single state transition diagram
❑ all state sets in a program see the same module-local variabl

in the example) can be used to implement control flows

● Other notes:
❑ run-time macro expansion permits parametrization of channe

of same sequence, each with own set of variables)
❑ arrays of channels can be used; useful for operating on sets 
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How specific to EPICS is the stat

● EPICS state machine concepts:
❑ as is illustrated by the (admittedly simple) example, the state
❑ this example could work in any environment where objects are

is the concept of a monitor (admittedly, other systems might n
❑ the only vaguely EPICS terms in the example aremonitor andpv

found in EPICS and stands for the fairly neutral “process vari
❑ in my experience, the same is also true of more complex exam

specific or OS-specific terms or routines in order to write EPI
❑ perhaps this is not surprising, considering that until recently a

supported (using, I believe, the Florida State University Posix

● state notation compiler
❑ the compiler useslex  andyacc  and is written in ANSI C; it run
❑ the generated ANSI C code contains only two references to E

OPT_VXWORKS option appears unused; the EPICS time-stam

● run-time environment
❑ clearly, the run-time environment is a different matter and is b

haven’t looked closely to see how much run-time code is port
❑ to put this in context, the run-time code consists of a total of 3

comments) in seven modules; there are a total of 1245 semic
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Implications of a port to Unix /

● I should declare that I have only a passing knowledge of CD

● Threads:
❑ most real sequences are inherently multi-threaded; under Vx
❑ state sets share a common address space, so a threaded so
❑ the underlying message system (CDEV and any services tha

properly in this threaded environment
❑ these problems must already have been solved for the ANL U

● Other:
❑ C dependence: the EPICS sequencer allows inline C code and

is to be retained, pre-processing into C (or maybe C++) must
❑ does this mean that use of Java and / or Java threads to prov

the question?



W .  M .  K E C K  O B S E R V A T O R Y

7 of 7

EPICS State
Machine

eek.

it from a state

or and local variables would be nice!)

sor macros provide a partial

ed in several places[note: also can be

 (including from ISRs)

ith display elements
97/05/20
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
SOFTWARE SHARING WORKSHOP

EPICS State
Machine

Wish list

● This list is slightly abbreviated from the one presented last w

● Minor additions:
❑ Allow action statements to be executed on entry to and on ex
❑ Support channel access put with callback (pvPutAck() )
❑ Support more of the C language (initialization, ternary operat
❑ Allow an action not to reset timers

● Major additions:
❑ Optionally permit several state sets to share a single task
❑ Permit a “subroutine” state, callable as an action[note: pre-proces

solution to this]
❑ Permit (parametrized) hierarchical states that can be referenc

partially addressed by pre-processing]
❑ Provide hooks for external C code to set and test event flags
❑ Provide a comprehensive test suite

● Longer-term additions:
❑ Integrate with display managers to provide direct interaction w
❑ Allow sequencer dynamically to create internal CA database
❑ Define SNL in terms of C++ objects (or Java?)
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