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● Very brief overview of SNL (state notation language) and ho

● Description of changes that I have made

● Fuller description and example of new monitor queuing facil

● Presentation of wish-list

1. Some material has been borrowed from Andy Kozubal and Bob Dalesio’s SNC tr

2. More detail will be presented at SOSH talk on Tuesday morning
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Overview

● SNL is a language designed specifically for translating state
❑ C-like: state notation compiler (SNC) converts SNL source co
❑ multiple parallel diagrams can be implemented; event flags o
❑ CA is directly integrated: channels appear as module-local va
❑ “just a CA client”; cantheoretically run on IOC or under Unix
❑ implemented by Andy Kozubal (LANL) to run under VxWorks
❑ port to Unix (XMSEQ) by Ben-chin Cha (ANL) is no longer su

● Typical uses:
❑ coordination of subsystems (e.g. automated startup)
❑ fault recovery (e.g. transition to safe state)
❑ access to Unix file-system on IOC (e.g. save / restore)

● The standard example (light on above 5.0v and off below 4.
state light_off {

when ( v > 5.0 ) {
light = TRUE;
pvPut( light );

} state light_on
}

state light_on {
when ( v < 4

light = 
pvPut(

} state light_o
}



W .  M .  K E C K  O B S E R V A T O R Y

3 of 9

Sequencer
Update

de

 ANL yet...

3.13 version):

et)

t
nel

on next slide)
 and monitor queue
e

ls
 are disconnected
97/05/15
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
EPICS COLLABORATION MEETING

Sequencer
Update

Changes that I have ma

● Apology: recent changes have not been propagated back to

● Minor changes (not mentioning things that made it into the R
❑ permitted~ (bitwise negation) operator and^L  characters
❑ allowed wakeup of state sets on event flag clear (as well as s
❑ removed assumptions that system clock is running at 60Hz
❑ fixed variable names in some normally-disabled debug outpu
❑ fixed race condition when monitoring run-time-assigned chan

● Major changes (all in support of queued monitors; rationale 
❑ newsyncQ  statement for associating variable with event flag
❑ newpvGetQ()  procedure to get first entry from monitor queu
❑ newpvFreeQ()  procedure to empty a monitor queue
❑ newseqQueueShow()  procedure to list monitor queue detai
❑ fixedseqChanShow()  not to claim that unassigned channels
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Queuing monitors: rationale

● At Keck, we use sequencers for controlling other sequencer
command to another (independent) sequencer, change stat
for completion, expecting it to becomeTRUE and thenFALSE

command

active?

time

go!

action
begins

master

(1) go!

(2) begin

(3) end
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Queuing monitors: rationale

● If the command completes immediately, the “begin” and “en
rapid succession and the master sequencer may not wake u
the “end” monitor has been delivered. The “begin” monitor h

● If this happens, the master sequencer will think that the slav
command and will typically time out.

● Accordingly, in July 1996 I proposed a means of (optionally)
them off one at a time in the sequencer code.

● I implemented the proposal and we have been using the ne
September 1996.

● On the next slides, I give an annotated example of the use o

● Note that the example does not use arrays, but they are supp
arrays to manage sets of subsystems). When an array is as
is a single queue per array, not per element.
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Queuing monitors: example
program queueDemo

long command;
assign command to “slave:command”;

long active;
assign active to “slave:active”;
monitor active;

evflag activeFlag;
syncQ active activeFlag 50;

ss main {
state start {

when () {
pvFreeQ( active );
command = TRUE;
pvPut( command );

} state sent
}

state sent {
when ( pvGetQ( active ) && active ) {

epicsPrintf( “-> active\n” );
} state active

Define sequence
with channels

Monitor the “activ

Define an event fl
(length 50; defau
flag withactive

Clear out any sta
command

pvGetQ() is quit
it dequeues the ol
it to active
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Queuing monitors: example
when( delay( 5.0 ) ) {

epicsPrintf( “active timeout\n” );
} state done

}

state active {
when ( pvGetQ( active ) && !active ) {

epicsPrintf( “-> done\n” );
} state done

when( delay( 5.0 ) ) {
epicsPrintf( “done timeout\n” );

} state done

}

state done {
when ( delay( 10.0 ) ) {
} state start

}
}

Han

“don
“act

Han

and
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Wish list (1)

● This list is mostly based on one supplied to me by Andy Koz
of ANL). I have merged in some of my own wishes and som

● Minor additions:
❑ Allow action statements to be executed on entry to and on ex
❑ Support channel access put with callback (pvPutAck() )
❑ Support more of the C language (initialization, ternary operat
❑ Allow an action not to reset timers

● Major additions:
❑ Optionally permit several state sets to share a single task
❑ Permit a “subroutine” state, callable as an action[note: pre-proces

solution to this]
❑ Permit (parametrized) hierarchical states that can be referenc

partially addressed by pre-processing]
❑ Provide hooks for external C code to set and test event flags
❑ Provide a comprehensive test suite
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Wish list (2)

● Longer-term additions:
❑ Once again support the sequencer under Unix
❑ Integrate with display managers to provide direct interaction w
❑ Allow sequencer dynamically to create internal CA database
❑ Define SNL in terms of C++ objects (or Java?)
❑ Documented handle on the C-code interface (????)

● It would be good to collect a fuller set and then get some com

● One problem: I don’t have any time or money to work on thi
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