
W . M . K E C K O B S E R V A T O R Y

1 of 7

EPICS State
Machine

 how it is used1 2 3

’ meeting last week

aining slides

erview slides
97/05/20
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
SOFTWARE SHARING WORKSHOP

EPICS State
Machine

Contents

● Brief overview of EPICS SNL (state notation language) and

● Extent to which the EPICS tool is specific to EPICS

● Implications of port to Unix / CDEV environment

● EPICS sequencer wish list

1. There is some overlap with the sequencer presentation given at the collaborators

2. Some material has been borrowed from Andy Kozubal and Bob Dalesio’s SNC tr

3. Some material has been borrowed from Ned Arnold’s state notation language ov

W . M . K E C K O B S E R V A T O R Y

2 of 7

EPICS State
Machine

g state transition diagrams into C

 rather than with states
de to C, which is then compiled
 be called)

r variables allow communication
ppear as module-local variables

 (major upgrades with v1.9)
pported

 complex closed loop control)
user and low-level system)
single variables)
97/05/20
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
SOFTWARE SHARING WORKSHOP

EPICS State
Machine

Overview (1)

● EPICS SNL is a language designed specifically for translatin
code:
❑ based on Mealy machine: actions are associated with events
❑ C-like: state notation compiler (SNC) converts SNL source co
❑ C code can be directly embedded (and external functions can
❑ multiple parallel diagrams can be implemented; event flags o
❑ EPICS CA (channel access) is directly integrated: channels a
❑ “just a CA client”; cantheoretically run on IOC or under Unix
❑ implemented by Andy Kozubal (LANL) to run under VxWorks
❑ port to Unix (XMSEQ) by Ben-chin Cha (ANL) is no longer su

● Typical uses:
❑ coordination of subsystems (automated startup or shutdown,
❑ enforcing prudent operational procedures (gateway between
❑ fault detection (for complex fault modes which are not tied to
❑ fault recovery (transition to safe state on detection of fault)
❑ access to Unix file-system on IOC (save / restore)

W . M . K E C K O B S E R V A T O R Y

3 of 7

EPICS State
Machine

5v):

iable */

A name */

e set” */

vPut(light);

vPut(light);
97/05/20
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
SOFTWARE SHARING WORKSHOP

EPICS State
Machine

Overview (2)

● The standard example (light on above 5.0v and off below 4.

Light is off

Light is on

Start

v > 5.0

Turn light on

v < 4.5

Turn light off

program lightDemo

double v; /* module-local var
assign v to “demo:volts”;
monitor v; /* “demo:volts” is C

long light;
assign light to “demo:light”;

ss main { /* “ss” means “stat

state lightIsOff {
when (v > 5.0) {

light = TRUE; p
} state lightIsOn

}

state lightIsOn {
when (v < 4.5) {

light = FALSE; p
} state lightIsOff

}
}

W . M . K E C K O B S E R V A T O R Y

4 of 7

EPICS State
Machine

ed EPICS channel
mes at run-time
t value of the EPICS channel
hange; monitor queuing)

ne that evaluatesTRUEis executed
areRUE, the sequence pends on an

e of which is an independent thread of

es; variables or event flags (not shown

l names etc. (can run multiple copies

of related channels
97/05/20
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
SOFTWARE SHARING WORKSHOP

EPICS State
Machine

Overview (3)

● More aboutassign andmonitor :
❑ assign makes an association between a variable and a nam
❑ this association can be dynamic; you can change channel na
❑ monitor arranges for the variable always to have the curren
❑ event flags can be used to achieve finer control (e.g. wake-up on c

● More aboutwhen() :
❑ states can have multiplewhen() clauses; the body of the first o
❑ on entry to a state, when() conditions are re-evaluated; if noneT

event (no polling)

● More about state sets:
❑ a sequencer program may contain multiple state sets, each on

control and corresponds to a single state transition diagram
❑ all state sets in a program see the same module-local variabl

in the example) can be used to implement control flows

● Other notes:
❑ run-time macro expansion permits parametrization of channe

of same sequence, each with own set of variables)
❑ arrays of channels can be used; useful for operating on sets

W . M . K E C K O B S E R V A T O R Y

5 of 7

EPICS State
Machine

e machine?

 machine is not specific to EPICS
identified by name and where there

ot call them monitors)
Put (the acronym PV is often

able”)
ples: one doesn’t need to use EPICS-

CS sequences
 Unix version of the sequencer was
 threads implementation)

s on many Unix systems
PICS or VxWorks (an

p format seems to be assumed)

ound to be heavily OS-specific; I
able
384 lines of C code (including
olons
97/05/20
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
SOFTWARE SHARING WORKSHOP

EPICS State
Machine

How specific to EPICS is the stat

● EPICS state machine concepts:
❑ as is illustrated by the (admittedly simple) example, the state
❑ this example could work in any environment where objects are

is the concept of a monitor (admittedly, other systems might n
❑ the only vaguely EPICS terms in the example aremonitor andpv

found in EPICS and stands for the fairly neutral “process vari
❑ in my experience, the same is also true of more complex exam

specific or OS-specific terms or routines in order to write EPI
❑ perhaps this is not surprising, considering that until recently a

supported (using, I believe, the Florida State University Posix

● state notation compiler
❑ the compiler useslex andyacc and is written in ANSI C; it run
❑ the generated ANSI C code contains only two references to E

OPT_VXWORKS option appears unused; the EPICS time-stam

● run-time environment
❑ clearly, the run-time environment is a different matter and is b

haven’t looked closely to see how much run-time code is port
❑ to put this in context, the run-time code consists of a total of 3

comments) in seven modules; there are a total of 1245 semic

W . M . K E C K O B S E R V A T O R Y

6 of 7

EPICS State
Machine

 CDEV

EV and have not used it

Works, each state set is a separate task
lution is necessary under Unix
t it may activate) needs to work

nix sequencer implementation?

direct invocation of C routines; if this
 be retained
ide the run-time environment is out of
97/05/20
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
SOFTWARE SHARING WORKSHOP

EPICS State
Machine

Implications of a port to Unix /

● I should declare that I have only a passing knowledge of CD

● Threads:
❑ most real sequences are inherently multi-threaded; under Vx
❑ state sets share a common address space, so a threaded so
❑ the underlying message system (CDEV and any services tha

properly in this threaded environment
❑ these problems must already have been solved for the ANL U

● Other:
❑ C dependence: the EPICS sequencer allows inline C code and

is to be retained, pre-processing into C (or maybe C++) must
❑ does this mean that use of Java and / or Java threads to prov

the question?

W . M . K E C K O B S E R V A T O R Y

7 of 7

EPICS State
Machine

eek.

it from a state

or and local variables would be nice!)

sor macros provide a partial

ed in several places[note: also can be

 (including from ISRs)

ith display elements
97/05/20
WILLIAM LUPTON

WLUPTON@KECK.HAWAII.EDU
SOFTWARE SHARING WORKSHOP

EPICS State
Machine

Wish list

● This list is slightly abbreviated from the one presented last w

● Minor additions:
❑ Allow action statements to be executed on entry to and on ex
❑ Support channel access put with callback (pvPutAck())
❑ Support more of the C language (initialization, ternary operat
❑ Allow an action not to reset timers

● Major additions:
❑ Optionally permit several state sets to share a single task
❑ Permit a “subroutine” state, callable as an action[note: pre-proces

solution to this]
❑ Permit (parametrized) hierarchical states that can be referenc

partially addressed by pre-processing]
❑ Provide hooks for external C code to set and test event flags
❑ Provide a comprehensive test suite

● Longer-term additions:
❑ Integrate with display managers to provide direct interaction w
❑ Allow sequencer dynamically to create internal CA database
❑ Define SNL in terms of C++ objects (or Java?)

	Contents
	Brief overview of EPICS SNL (state notation language) and how it is used
	Extent to which the EPICS tool is specific to EPICS
	Implications of port to Unix / CDEV environment
	EPICS sequencer wish list

	Overview (1)
	EPICS SNL is a language designed specifically for translating state transition diagrams into C code:
	based on Mealy machine: actions are associated with events rather than with states
	C-like: state notation compiler (SNC) converts SNL source code to C, which is then compiled
	C code can be directly embedded (and external functions can be called)
	multiple parallel diagrams can be implemented; event flags or variables allow communication
	EPICS CA (channel access) is directly integrated: channels appear as module-local variables
	“just a CA client”; can theoretically run on IOC or under Unix
	implemented by Andy Kozubal (LANL) to run under VxWorks (major upgrades with v1.9)
	port to Unix (XMSEQ) by Ben-chin Cha (ANL) is no longer supported

	Typical uses:
	coordination of subsystems (automated startup or shutdown, complex closed loop control)
	enforcing prudent operational procedures (gateway between user and low-level system)
	fault detection (for complex fault modes which are not tied to single variables)
	fault recovery (transition to safe state on detection of fault)
	access to Unix file-system on IOC (save / restore)

	Overview (2)
	The standard example (light on above 5.0v and off below 4.5v):
	Light is off

	Overview (3)
	More about assign and monitor:
	assign makes an association between a variable and a named EPICS channel
	this association can be dynamic; you can change channel names at run-time
	monitor arranges for the variable always to have the current value of the EPICS channel
	event flags can be used to achieve finer control (e.g. wake-up on change; monitor queuing)

	More about when():
	states can have multiple when() clauses; the body of the first one that evaluates TRUE is executed
	on entry to a state, when() conditions are re-evaluated; if none are TRUE, the sequence pends on ...

	More about state sets:
	a sequencer program may contain multiple state sets, each one of which is an independent thread o...
	all state sets in a program see the same module-local variables; variables or event flags (not sh...

	Other notes:
	run-time macro expansion permits parametrization of channel names etc. (can run multiple copies o...
	arrays of channels can be used; useful for operating on sets of related channels

	How specific to EPICS is the state machine?
	EPICS state machine concepts:
	as is illustrated by the (admittedly simple) example, the state machine is not specific to EPICS
	this example could work in any environment where objects are identified by name and where there i...
	the only vaguely EPICS terms in the example are monitor and pvPut (the acronym PV is often found ...
	in my experience, the same is also true of more complex examples: one doesn’t need to use EPICS- ...
	perhaps this is not surprising, considering that until recently a Unix version of the sequencer w...

	state notation compiler
	the compiler uses lex and yacc and is written in ANSI C; it runs on many Unix systems
	the generated ANSI C code contains only two references to EPICS or VxWorks (an OPT_VXWORKS option...

	run-time environment
	clearly, the run-time environment is a different matter and is bound to be heavily OS-specific; I...
	to put this in context, the run-time code consists of a total of 3384 lines of C code (including ...

	Implications of a port to Unix / CDEV
	I should declare that I have only a passing knowledge of CDEV and have not used it
	Threads:
	most real sequences are inherently multi-threaded; under VxWorks, each state set is a separate task
	state sets share a common address space, so a threaded solution is necessary under Unix
	the underlying message system (CDEV and any services that it may activate) needs to work properly...
	these problems must already have been solved for the ANL Unix sequencer implementation?

	Other:
	C dependence: the EPICS sequencer allows inline C code and direct invocation of C routines; if th...
	does this mean that use of Java and / or Java threads to provide the run-time environment is out ...

	Wish list
	This list is slightly abbreviated from the one presented last week.
	Minor additions:
	Allow action statements to be executed on entry to and on exit from a state
	Support channel access put with callback (pvPutAck())
	Support more of the C language (initialization, ternary operator and local variables would be nice!)
	Allow an action not to reset timers

	Major additions:
	Optionally permit several state sets to share a single task
	Permit a “subroutine” state, callable as an action [note: pre-processor macros provide a partial ...
	Permit (parametrized) hierarchical states that can be referenced in several places [note: also ca...
	Provide hooks for external C code to set and test event flags (including from ISRs)
	Provide a comprehensive test suite

	Longer-term additions:
	Integrate with display managers to provide direct interaction with display elements
	Allow sequencer dynamically to create internal CA database
	Define SNL in terms of C++ objects (or Java?)

