
CAQTDM, AN EPICS DISPLAY MANAGER BASED ON QT

A.C.Mezger, H.Brands, Paul Scherrer Institut, Villigen, Switzerland

ABSTRACT
At the Paul Scherrer Institut (PSI) the display manager

MEDM was used until recently for the synoptic displays
at all our facilities, not only for EPICS but also for
another, in-house built control system ACS. However
MEDM is based on MOTIF and Xt/X11, systems/libraries
that are starting to age. Moreover MEDM is difficult to
extend with new entities. Therefore a new tool has been
developed based on Qt. This reproduces the functionality
of MEDM and is now in use at several facilities. As Qt is
supported on several platforms this tool will also run on
Microsoft Windows. The MEDM data files (.adl) were
used as an initial set for the new system and were
converted into the new xml format using the parser tool
adl2ui. These were then edited further with the Qt-
Designer and displayed with the new Qt-Manager
caQtDM. The integration of new entities into the Qt
designer and therefore into the Qt based applications is
very easy, so that the system can easily be enhanced with
new widgets. New features needed for our facility were
implemented. The caQtDM application uses a C++ class
to perform the data acquisition and display; this class can
also be integrated into other applications.

INTRODUCTION
In the EPICS environment of most accelerator
laboratories graphical synoptic display tools like MEDM,
EDM as well as many others were developed. These tools
have been used for many years with success, but many of
them are currently reaching their end of life due to the
evolution of the graphic platforms. Moreover these in-
house solutions are nearly impossible to maintain and to
extend, because either a developer has to be found for the
older underlying graphic systems or because the systems
are likely to disappear in the near future [1] [2].

A new tool should therefore be independent of the
underlying graphical system and its components have to
be also as much as possible widely supported. The actual
solution for these requirements lies in the world of Qt,
which provides modern graphical support on many
platforms. Qt comes also with its own graphical editor
and a developer can easily add new widgets to it, so that
an open source (LGPL v2.1) solution that can also be
used under commercial terms is available. Most of the
work for rendering the data on the synoptic display is
then represented by the handling of the data acquisition
system.

Figure 1: Qt-Designer editor where the graphical objects are situated on the left and can be dragged on the middle
window for composing a display. The properties of the objects are display in the right corner window.

QT, A GUI FRAMEWORK

Qt framework
Qt represents a cross-platform application framework

that is widely used for developing applications with a
graphical user interface. It runs on the major desktop
platforms on top of their native display system, so that a
Qt-based application will run on these platforms with the
same look and feel. A major advantage of this system lies
in the fact that it is used by a huge community and that
very detailed documentation is available.

Qt comes with many libraries, an integrated
development environment (IDE) Qt-Creator and a user
interface designer Qt-Designer. The Qt libraries are
already included in many Linux distributions, albeit not
always with a version greater than 4.8. Where necessary
newer versions can easily be downloaded and installed. In
addition to the libraries, the Qt-Designer and Qt
development package should also be installed in order to
build graphical user interfaces and Qt-applications.

For Linux all relevant Qt-Packages have to be
downloaded and installed. Afterwards the downloaded
caQtDM package [3] must be build. For Windows, the
windows distribution of caQtDM including EPICS is all
that is needed.

Some third party libraries based on Qt like qwt for 2D
graphics and qwtplot3d for 3D graphics can be integrated
and the caQtDM package uses qwt for drawing strip
charts and x/y Cartesian plots. At PSI qwtplot3d is used
in dedicated applications to display x/y plots as a function
of time and can be integrated in caQtDM if the need for it
arises.

The current version of Qt used at PSI is Qt 4.8.2

Qt-Designer, the graphical user interface
builder of Qt

The Qt-Designer (Fig.1) allows a developer to plug-in
his own graphical objects with their methods and
properties, so that integrating new graphical control
objects is quite easy and will give the user a rich
environment for developing user interfaces. Many
graphical objects have been integrated, not only the
standard MEDM objects like strip plot, cartesian plot,
wheel switch, text monitor, bar monitor, etc. but also
some new objects for camera display, LEDS, toggles,
internal channels and many more.

The include object, called composite widget in MEDM,
can now also be represented in Qt-Designer. This was not
the case in the first versions of the plug-ins as was
presented in earlier communications [4].

The Qt-Designer gives the control display “architect” a
performant interface to draw his displays. It is
straightforward to drag an object into the editor window.
As soon as the object has been placed and resized, the
properties of the object can be edited. The most important
one is of course the process variable (called channel in
EPICS 3). This property may present a variable as in

MEDM that will be replaced by defining a macro at run
time of caQtDM.

Actually 30 control widgets are integrated, these
widgets are not directly CS-aware, but provide the
properties and methods to be used with applications. The
application caQtDM will then add the control information
coming from the control system (usually EPICS).

CAQTDM, THE DISPLAY TOOL

Requirements
caQtDM has been developed with Qt version 4.8.2 qwt
version 6.0.1 and EPICS version 3.14.12 and has been
extensively tested with these versions. Since version 3.2.0
of caQtDM the package can be built also with Qt version
5.1.0 and qwt version 6.1.0. However this version has not
yet been thoroughly tested and a bug in Qt 5.1.0 must be
patched (QTBUG-33130) in order to treat some properties
correctly.

Components
For caQtDM, many C++ classes had to be developed.
First of all, the necessary graphical objects were created.
These objects are pure graphical objects and could be
used for other purposes. The objects are plugged into the
Qt-Designer. With this tool a display description is
written that will be read by the caQtDM_Lib class that
will combine the display definitions with the control
system data. This architecture separates display
definitions and control system data acquisition; we think
that this allows to support multiple control systems in a
clean way. At our site we support simultaneously 2
control systems, EPICS and an older in house made
system ACS. caQtDM uses this class and represents the
stand-alone application for the control synoptic displays.
The architecture of the different components is shown in
figure 2.

 In case of GUI applications where more logic and data
treatment is required, the above class can be integrated.
The user does not need to bother about the data
acquisition while provided by the library class. Access to
the display items and data can then be used to enhance the
application with the necessary logic.

 At PSI caQtDM supports two control systems, EPICS
and our in-house made control system ACS. Additionally
a skeleton for EPICS4 can be activated by selecting the
appropriate option when building the package. Other
control systems could be easily integrated by filling the
internal data container.

Fig. 2: Architecture of the Qt synoptic display package

The adl2ui tool is included in the installation package to
convert MEDM display files to the caQtDM xml files.
This tool presents an easy and fast path to switch from
MEDM to the new synoptic display tool. However at PSI
we also modify the resulting screens in order to have a
consistent look and behavior. A style guide for developers
has therefore been written for this purpose [4].

For fast prototyping of control displays caQtDM also
supports a restricted set of instructions of our in-house
developed scripting language [5]. This allows us to
display rapidly data in a tabular way (Fig. 3) or print
several representations in a batch manner. This feature is
constantly extended.

DEVELOPING / RENDERING A DISPLAY
It has to be pointed out that the package does not consist
of a single application capable to edit and run the displays
as in other tools like MEDM, EDM,

The toolkit consists of the Qt-Designer as display editor
and caQtDM as display run time tool, the Qt-Designer
being delivered with Qt and supported by Qt.

When developing a control display from scratch, the Qt-
Designer tool is used. The various control objects are
located in the left panel and can be dropped on the user
display situated normally in the center panel.

The properties for the selected object can then be changed
in the property panel. In order to have some default styles
for the control panel a default style sheet should be loaded
for the “mainwindow”, the parent object of the control
display. This style sheet is provided by the package and
its contents can be pasted into the style sheet definition. In
the style sheet you will be able to change some styles, but
one of them represents the background of your control

display that can be changed by specifying the color with
Qwidget#centralWidget {background: rgba(187, 187,
187, 255);}

The most important property of a control object is of
course the process variable (pv) name. In case of some
objects like the strip tool several pv’s can be given
separated by a semi-column. The display rate by default
is 5 Hz and by specifying a JSON string of the following
type after the pv this rate can be modified:
{“monitor”:{“maxdisplayrate”:20}}. This is useful when
displaying camera images or when one really wants to
limit the rate for performance reasons.

Qt-Designer has also a concept of layouts that will not be
described here. Using this feature gives the possibility to
control the resizing of a display. However this feature is
normally not needed, because caQtDM will resize the
control displays hopefully correctly in all cases and will
also respect the user layout behavior.

After or during the development of the control display the
display may be viewed with its control values by the
application caQtDM (Fig 4). This application provides
also a function to reload the already displayed control
panel, so that at any time the panel can be updated.

CONCLUSIONS

 Qt-Designer extended by our plug-ins and caQtDM
represents a good control system environment for
developing and rendering control system data displays
and a powerful replacement for the well known MEDM
tool used in the EPICS community. Moreover the tools
are not restricted to EPICS and other control system could
be easily supported.

Also the fact that these tools run on many platforms,
including Microsoft Windows and are not bound any
more to X-Windows, allows the package to be ready for
next generation graphical platforms like Wayland [1] and
Mir [2]. This presents a wide range of platforms and gives
thus the possibility of a rapid deployment of the tools.

ACKNOWLEDGMENT
The authors would like to thank D.Anicic (PSI)

for his valuable comments and A.Luedeke (PSI) as well
as other users for the testing of the caQtDM package.

REFERENCES
[1] Information about Wayland can be found at

 http:// wayland.freedesktop.org/

[2] Information about Mir can be found at
http://unity.ubuntu.com/mir/

[3] caQtDM package can be found at
http://epics.web.psi.ch/software/caqtdm/

[4] Epics collaboration meeting at SLAC, spring 2012.

[5] Application development style guide for the SwissFEL,
A.Luedeke, internal PSI communication, August 2009

[6] Pep scripting language manual, W.Portmann, internal PSI
communication.

!grid 2
comment comment -span 1 -bg "#ffffff" " "
XHIPA:TIME formRead
comment comment -span 2 -fg "#ff00ff" Ion Source
IVVH2OF:SOLA:2 formRead %5.2f
IVGF:IST:2 formRead 5.2

IVMWFP:SOL:2 formRead %5.0f
IVMWFP:IST:2 formRead %5.0f

Fig. 3: Example of display generated with the scripting language

shown below

