The description of the GPMM general purpose device and driver
support for the memory mapped devices.

The GPMM driver was foreseen to support VME memmipped cards. It allows easy
integration of new cards to EPICS. It offers basi&d and writes capability. Its functionality
could be easily extended by the user define funsthich are easy to write and does not
require in depth knowledge of EPICS drivers. Rdgehe GPMM driver was extended for
Linux based systems including embedded ones. ThédNGHEriver Source code could be
found under the link: http://epics.web.psi.ch/sa@ite/GPMM

1. Thesetup of the startup script

Load the GPMM device and driver support in stetup.script by means of the require entry:
require "gpmm" /* sls way of loading drivers */

an alternative is:

dbLoadDatabase(“*GPMM.dbd”)

Id < slsDevLib.o

ld < drvGPMM.0

|d < devGPMM.o

There are three types of functions, which shouldgesd (in thestartup.script) for the
hardware card configuration:

- GPMMConfigure

- addGPMMRegister

- addGPMMinterrupt
The GPMMConfigure deals with the card itself. Trll@PMMRegister refers to the card
memory locations - called registers. The addGPMbfhupt configures the interrupt to be
used by EPICS channels.
The GPMMConfigure function invocation requires fhkkowing arguments:

GPMMConfigure(cardNr, baseAddr, cardName, addrAccessMode, dataAccessMode)

where:

cardNr - the consecutive card number.

baseAddr - VME base address of the given card.

cardName - up to 15 character long string (carde)a

addrAccessMode - address access mode. 3 cham@utestring ("A16" or "A24" or

"A32").

dataAccessMode - data access mode. 2 or 3 chalaatestring ("D8" or "D16" or

"D32").

M.Dach 29.04.2010 GPMM v.3.0.4 Pagelof 9

example:

GPMMConfigure(0,0x01600000,"ADC","A32","D32")
The addGPMMRegister function invocation requiresftiilowing arguments:

addGPMMRegister(cardNr, refNr, addrOffs, bytesNr, readWrite, regName, userFunc)

where:

cardNr - the consecutive card number. It makesasociations between hardware
card and the register.

refNr - the consecutive register number for theegicard.

addrOffs - offset with the respect to the base eskifor the hardware card.

bytesNr - number of bytes requested for the giegster (if O then no read verification
, on the driver support level, is done).

readWrite - test the register for reading or writing. The argument could be ‘R’ for reading, ‘W’ for

writing, ‘X’ do not test the register for reading or writing.
regName - name of the register (up to 20 charatdarsstring).
userFunc - user function which could be optionaljtled to process the data. The value

0 should be used if no additional function igjuieed. More about this
function will be written later in chapter 3.

The addGPMMiInterrupt function invocation requirke following arguments:

addGPMMiInterrupt(cardNr, IntrLevel, IntrVector, uk&R)

where:

cardNr - the consecutive card number. It makesasociations between hardware
card and the interrupt service routine (ISR).

IntrLevel - Interrupt Level.

IntrVector - Interrupt Vector.

userISR - Interrupt Service Routine is called wheterrupt occurs. This routine
cause that EPICS channel is processed. In nassiscthe default ISR i.e.
defaultGPMMISR could be used which does whateeded to process the
EPICS channel when interrupt occurs.

example:

addGPMMiInterrupt(0, 3, 254, defaultGPMMISR)

2. The setup of the EPICS database

General statement.

For the time being it was done the implementatmrttie following record typesi, ao, bi,
bo, mbbi, mbbo, longin, longout, mbbiDirect, mbboDirect, stringin, waveform.

To access the registers (hardware card memoryidosatthe following fields should be set:

field (DTYP, "GPMM")

M.Dach 29.04.2010 GPMM v.3.0.4 Page2of 9

field (INP, "#Cx Sy @zzz[:i1:i2][,OUT,SEQ,B=kk,m=kk,s=kk,iRead=I]") or
field (OUT, "#Cx Sy @zzz[...][...]")

where:
X - refers to the hardware card number (cardijum@ent of the
GPMMConfigure and addGPMMRegisterdiions.
y - refers to the offset from the register addrgzz). The offset is expressed in terms
of bytes regardless the record type.
zzz - register name. It is the same string gslaene argument in the addGPMMRegister
function.

There are two types of optional arguments. One tgp&” separable, another one *“”
separable. The " separable arguments are the amguments that could be used by the user
defined function. There could be used maximally ®vguments of that type i.e. il and i2
(which are integer numbers).

Optional arguments “,” separable refer to the waw lthe data is read/write to the memory
location. The convention is as such that, eachooptiargument is referenced by a single
letter (ex.: B,m,s). Capital letters refer to bytsd lower case letters refer to bits. The
meaning of the optional arguments is as following:

B - is the number of bytes to be read out or writeethe card. The lett®& stands for
Bytes.

m - number of bits to be read out written to thelcadhe lettem stands for thenask.

S - number of bits of an offset with the respec$ pmrameter of the INP or OUT filed.

This parameter could be used fobbj,mbbi, mbbo, mbbiDirect, mbboDirect
records. The lettestands for thehift.
Kk - is a decimal value.
iIRead - could be used lap, bo, mbboDirect, mbbo, longout, waveform records to be
initialized during boot up processhwthe data read out from the memory location
they deal with. If the initRead istspecified the default action is not to read data
during boot up.
Il - could beY or VAL . OptionY means initialize record from the hardware
VAL means initialize the record from VAL filed (this iseful when using save
and restore) at boot up.
OUT - could be used for waveform record to sepiis an output one.
SEQ - could be used for waveform record to readrde the waveform from/to the
memory location in a sequential way (i.e. nefgy to the same address).

Remark:
For the mbbi, mbbo, mbbiDirect and mbboDirectapéonal arguments could be
used alternatively with the standaedid like nobt (number of bits) and shft (number
of bits to shift).

example:
record(mbbiDirect,"GPMM-TEST:mbbiD01") {

field(DTYP, "GPMM")
field(INP, "#C3 S5 @Firmware,s=2,m=7")}

M.Dach 29.04.2010 GPMM v.3.0.4 Page3of 9

For the given example the chan@®MM-TEST:mbbiD01 reads 7 bits of data from the
memory location:

baseAddr (of the card 3) +

addrOffs (of the Firmware register) +

5 (Bytes) + 2 (bits)

3. Theusage of the user defined function

The aim of the user define function (last argunenihe addGPMMRegister function) is to
do some data manipulation required by the user.uBee function (if defined) is called twice
when the EPICS record is processed (ie. once baforessing the desired memory location
and once after accessing the memory). This fundtia@alled from the level of driver support
functions which reads/writes the data to desirechorg locations.

Simplified example of the user function for inpatords like ai, longin, mbbi.looks like :

I nt myGPMVIFunc(
unsi gned short card,
unsi gned short signal,
struct recDesc *parm
unsi gned short sRecor dType,
unsi gned short sRecor dPass,
char *chanNane,
voi d *pVal
) {
unsigned |long [Val;
unsi gned short sVal;
short status=RETURN CX;

/* for ai ao longin |longout records (R)VAL is 4 bytes long */
| Val = *((unsigned long *)pVal);

/* for nbbi nbbo bi bo RVAL is 2 bytes |ong*/

sVal = *((unsi gned short *)pVal);

PROCESS_DATA FROM | NPUT_RECORD BEG N

/* do your data processing here. Use |IVal or sVal dependi ng on
your record type */
I f (sRecordType==REC_Al){
printf("Record AlI\n");
printf("myGPMVFunc C¥ S% @& % 0x% 8X\n", card, si gnal,
par m >sDesc, chanNane, (unsigned int) |Val);
}
status = RETURN_FROM | NPUT_RECORD CX;
/[* if error than status = RETURN_FROM | NPUT_RECORD ERROR */

PROCESS DATA FROM | NPUT_RECORD END

return (status);

}

M.Dach 29.04.2010 GPMM v.3.0.4 Page4of 9

For output records use the corresponding macros:

PROCESS_DATA_FROM_OUTPUT_RECORD_BEGIN
PROCESS_DATA_FROM_OUTPUT_RECORD_END

RETURN_FROM_OUTPUT_RECORD_OK
RETURN_FROM_OUTPUT_RECORD_ERROR

3.1 Advanced user defined function programming

The following example explains how the user defunaction is called when the mbboDirect
Record is process on the device driver level.

writeMbboDirect(){

/* invoke the user function on enter */
status=userFunction();

if(status == PROCESS_DATA){
[* data is written to the desired memory location */

}

if (status == ENTER_FUNC){
/* invoke the user function on exit */
userFunction();

}

} /* return from the WriteMbboDirect() */

The user function returns predefined status coterélare following predefined codes:

RETURN_OK : This code is interpreted 8BROCESS_DATA | ENTER_FUNC
RETURN_ERROR : This suppresses further actions and forwardeitior status
to the device support level.
RETURN_WRITE_SKIP : This code is interpreted &NTER_FUNC
RETURN_READ_SKIP : Similar like code above but for read type resdikie
mbbiDirect

RETURN_USER_FUNC_SKIP : This code is interpreted 8&ROCESS DATA

There could be also used in the user functionalig combinations:
status= RETURN_WRITE_SKIP | RETURN_USER_FUNC_SKIP
status= RETURN_READ_SKIP | RETURN_USER_FUNC_SKIP

In general, user function refers to the rval fiefdhe epics channel. The user function should
be written with special percussion since the EPiGS filed for the mbbi, mbbo, mbbiDirect
and mbboDirect is declared as short (2 bytes) an@ifand ao is declared as long (4 bytes).
The val filed for longin and longout records is ldeed as long (4 bytes).

M.Dach 29.04.2010 GPMM v.3.0.4 Page5of 9

The example skeleton for user function looks like:

i nt myGPMVIFunc(
unsi gned short card,
unsi gned short signal,
struct recDesc *parm
unsi gned short sRecor dType,
unsi gned short sRecor dPass,
char *chanNane,

voi d *pVal
)
{
unsigned |long [Val;
unsi gned short sVal;
short st at us=RETURN_CX;

/* for ai ao record. IVal refers to the rval field */
| Val = *((unsigned long *)pVal);
sVal = *((unsi gned short *)pVal); /* for nbbi nbbo bi bo */

i f (sRecor dPass==REC_ENTER) {

/* __ */
/* code executed on function enter */
/* __ */

i f(sRecordType==REC Al){
printf("Record AlI\n");
printf("myGPMMFunc C% S%l @6 %
0x% 8X\ n", card, si gnal ,
par m >sDesc, chanNane, (unsigned int) |Val);

}

}

el se{
/* ___ */
/* code executed on function exit */
/* ___ */

printf("FUNCTI ON PASS on EXIT\n");

}

return (status);
}

M.Dach 29.04.2010 GPMM v.3.0.4 Page6of 9

4. The user Interrupt Service Routine

When the interrupts are used by means of the add@Rtdrrupt function the ISR routine
should be specified. In most cases it is sufficienuse the default ISR defultGPMMISR
which does all what is needed to process the ERIMagnel. User however can define its own
routine to perform some additional actions.

The skeleton of user ISR routine is presented kelow

void myGPMMisr(struct io_ GPMM *pPrivat){

/* Insert your code below */

/* end of your code */

pPrivat->ilntrCounter++;
scanloRequest(pPrivat->paioscanpvt);

}

5. Example of the startup script and the database

The startup script example:

require "gpmm"

#GPMMConfigure(cardNr, baseAddr, cardName, addrAccessMode,
dataAccessMode)

#addGPMMRegister(cardNr, refNr, addrOffs, bytesNr, regName, userFunc)

GPMMConfigure(0,0x01600000,"DAC","A32","D32")
addGPMMiInterrupt(0,3,254, defaultGPMMISR)

addGPMMRegister(0,0,0x20,4,'R’,"Firmware",debugGPMMFunc)
addGPMMRegister(0,1,0x40,4,'W’,"Control",0)

GPMMConfigure(1,0x02000000,"ADC","A24","D32")
addGPMMRegister(1,0,0x10,4,0,’R’,"Status")

In the given example, there are configured two €&l "DAC" and "ADC". The DAC card
contains two registers i.e. "Firmware" and "Contrdlhe DAC card uses interrupt (Vector
254, Level 3). The GPMM-TEST:SOFT-TRIG channerfigger when the interrupt occurs.

M.Dach 29.04.2010 GPMM v.3.0.4 Page7of 9

The EPICS data base example:

record(ai,"GPMM-TEST:ai01") {
field(DESC, "DAC Firmware register")
field(DTYP, "GPMM")
field(INP, "#C0O SO @Firmware")
field(PINI, "YES")}

record(ao,"GPMM-TEST:a001") {
field(DESC, "DAC Control register")
field(DTYP, "GPMM")
field(OUT, "#C0O SO @Control,iRead=Y")}

record(mbbiDirect,"GPMM-TEST:mbbiD01") {
field(DESC, "ADC Status register")
field(DTYP, "GPMM")
field(NOBT, "16")
field(INP, "#C1 SO @Status")}

record(mbbiDirect,"GPMM-TEST:mbbiD02") {
field(DESC, "ADC Status register")
field(DTYP, "GPMM")
field(NOBT, "16")
field(INP, "#C1 S2 @ Status")}

record(mbbiDirect,"GPMM-TEST:SOFT-TRIG") {
field(DESC, "ADC Control register")
field(SCAN, “I/O Intr”)
field(DTYP, "GPMM")
field(NOBT, "16")
field(INP, "#CO S2 @Control")}

6. Thedebug tools

There is a way to check if the hardware settingsrgin the startup script are correct. In order
to perform such a check up first the ioc shouldbbeted and then type:

dbior "drvGPMM",1
to get all configuration and status information.

dbior "drvGPMM",2

to get the readout for defined registers. If tredout is not correct that means that most
probably the hardware settings were not correct.

M.Dach 29.04.2010 GPMM v.3.0.4 Page8of 9

7. ChangelLog

Version 3.0.4 :

1. It was added the support for waveform recordrder to use it in addition as an output
one. To do so add the parameter OUT in the INE.figéee the chapter 2.

2. It was introduced the new feature for wavefoeaord in order to use SEQuential
memory read/write capability. To do so add the peter SEQ in the INP field. See the
chapter 2.

Version 3.0.3 :

1. It was added the device support for: MBBO, MBBONGIN, LONGOUT records.

2. It was introduced the new feature for tRead option. IfiRead is set toVAL then the
record is initialized from the VAL field. This faate could be used by auto save and

restore mechanism.

3. It was added the functionality to deal with LinQS.

M.Dach 29.04.2010 GPMM v.3.0.4 Page9of 9

